Parallelizing Gaussian Process
Calculations in R

Christopher Paciorek UC Berkeley Statistics

Joint work with:

Benjamin Lipshitz UC Berkeley EECS (formerly)

Wei Zhuo IBM

Prabhat Lawrence Berkeley National Laboratory
Cari Kaufman UC Berkeley Statistics (formerly)

Rollin Thomas Lawrence Berkeley National Laboratory

www.jstatsoft.org/v63/i10
https://github.com/paciorek/bigGP

JSM, August 2015

Funded by DOE Office of Advanced Scientific Computing Research (AC02-05CH22131) and supported by NERSC

A basic Gaussian process (GP) model

Y|g,60 ~N(g,C, (8))
gle ~Nu(),C,(0))

fy)«|C, (@) +C,(0)] % exp (— %(y —u@)T(C, (@) +C,(0) (Y- u(e)))

Computational goals for GP calculations:

* Likelihood optimization

* Prediction

* Prediction uncertainty

« Simulation (unconditional and conditional on data)

Computational patterns for GP calculations:

* Construct covariance matrices (training and prediction points)
* Cholesky decomposition

* Forward/backsolve

* Matrix multiplication (various forms: matrices, vectors, crossproducts,
diagonal matrices, etc.)

Responses to computational considerations

Change the model

 Sparsify the covariance/precision matrix

* Reduce dimensionionality (e.g., basis functions)
* Predict based on subset of data / local models
* Approximate the likelihood

Use a lot of processing power

e Shared memory (multicore architecture)

* GPUs

* Distributed memory (clusters, supercomputers)

Our approach

* Use many cores to distribute computation and memory

* Hybrid parallelization = distributed processing (MPI) + threaded computation
(OpenMP)

e Original plan to use ScalLapack from R (pbdR now does this)

* bigGP: tailor parallel linear algebra algorithms to Cholesky decomposition
(rate-limiting step) and interface to R

Blockwise Cholesky (Crout’s algorithm)

1?151) 1?1i1)
2f2j1) 4%2i2) 2f2j1) 4(2.2

1(1.1)

2(2.1) 4f262)

covariance marix factorized result

bigGP: Parallelizing Gaussian Process Calculations in R

Computational considerations

Questions

* How many submatrices / how big

* How many submatrices (and which ones) per node or per process

 How many processes per multi-core node / should individual submatrix
calculations be threaded

Basic tradeoffs

* Efficient local computation (increase block size up to point that submatrix
doesn’t fit in cache)

* Load-balancing (want all processors active)

 Reduce communication (pass less information between processes)

Computational approach

Suppose we have P=10 processes and D=4 blocks. We could have one submatrix per
process (left with blocking factor B=4 and h=1) or multiple submatrices per process
(right with replication factor h=3 and blocking factor of B=hD=12)

-

\\\ | \1__'
1. 25,
RN 3/6[8]
o] 4171910
. , .
2 5. 1[2]3]4]%.
o 2[5]6[7]2]s.
o~ 3|6[8]9l3]6][s!
3 6 8. a|7]9]10[4]7]9]10
N 1[2[3[4]1]2]3]4]%]
] 256712567 2[5
4 7 9 10. 3|6[8]ol3]6[8]9]3]6]8.
N 47910l 47910/ 4]7]9[1d

bigGP: Parallelizing Gaussian Process Calculations in R

Computational approach

Answers:
 How many blocks (submatrices) / how big:

Your choice but 1000x1000 may be good; submatrix size is ~ n/hD where P=D(D+1)/2
* How many submatrices (and which ones) per node or per process:

Your choice of h. We allocate submatrices to processes for you.

One process per node with threading, but might define a “node” as a subset of
processors on cluster machine — e.g. divide 24 cores into 4 6-core “nodes”
Comments
* Our allocation of which submatrices are grouped on a process improves load-
balancing
e Using multiple submatrices per process and one process per “node” reduces
communication
* Flexible choice of #submatrices per process allows tailoring of submatrix size to cache
* Flexible number of cores per process (cores on a virtual node) allows hybrid
parallelization that balances threading vs. additional virtual nodes

bigGP: Parallelizing Gaussian Process Calculations in R 7

Execution time, seconds (log scale)

Cholesky decomposition, n=32768

1 : ' h=1 ——
Scaling results
g T, h=4 ----%----
© g, h=8 i
S : optimal h
o ScalLAPACK ---e--
2 100 }
(2]
©
[
o
[&]
(0]
(%]
N o)
Cholesky Decomposition g
1000 p=r T T T S
5
>
i
100 , .
o KX
10 F \ \ =
10 10 100
Number of cores (log scale)
1 i Cholesky decomposition, n=32768
X i 1 core per pro'cess —
6 cores per process
0.1 6cores —— | 24 cores per process -------
' 60 cores < 100 k]
o 816 cores ----x--- 9
12480 cores -~ o
49920 cores o
0.01 &= L L L e
2048 8192 32768 131072 2
Matrix dimension, n (log scale) §
(%]
1o i 4
£ 10
<
o .
= *
=}
(8]
w
-
1 o Il Il Il Il r

10 100 1000 10000
Number of cores (log scale)

bigGP: Parallelizing Gaussian Process Calculations in R 8

Software design of the bigGP package

* Initialization (from R) initializes multiple processes and sets up how submatrices are
assigned to processes
* All computations done in a distributed fashion and sequential operations (e.g.,
Cholesky, then forwardsolve then matrix multiplication) carried out as pipeline
e Core distributed linear algebra operations (Cholesky, forwardsolve, matrix
multiplication, etc.) are done via MPI from C
* bigGP API controls operations from R
* Functions for managing objects on worker processes and moving general
objects between master and workers
* Functions for distributing and collecting distributed matrices/vectors between
master and workers, hiding details of what is stored where and in what format
 Wrapper functions that carry out the distributed linear algebra by calling the
core C/MPI code
» Specific kriging (likelihood optimization) implementation via krigeProblem
ReferenceClass and member functions that carry out:
e Construction of mean and covariance (in distributed fashion) using user-defined
functions
e Calculation of log density
* Prediction with uncertainty
e Simulation either conditional or unconditional on data

Astrophysics example

* Analysis by C. Kaufman in collaboration with R. Thomas

e Data are flux from the Type la supernova SN2011fe, as a function of wavelength and day
* n=67,275

* Interest lies in smoothing the data and estimating the wavelength of minimum flux

Day
5
|

T T T T T T
4000 5000 6000 7000 8000 9000

Wavelength (log scale)

bigGP: Parallelizing Gaussian Process Calculations in R 10

Statistical model and code

Y; = Z(t;, w;) + ay, + €
Z~GP(u(;k,A),02K(-,; p) K(Cp; pw)

 Random effects, alpha, for each day

 Known, heteroscedastic error variances based on instrumentation

e Covariance of product form in the two dimensions

 Mean function (of time only) based on empirical pattern of variation with
wavelength

* 465 processes, 6 cores per process, 117 nodes on NERSC’s Hopper supercomputer

 Rcode:

R> prob <- krigeProblem$new(‘prob’, numProcesses = 465, meanFunction =
SN2011fe meanfunc, predMeanFunction SN2011fe predmeanfunc, covFunction
= SN2011fe _covfun, crossCovFunction SN2011fe crosscovfun,
predCovFunction = SN2011 predcovfun, inputs = c(as.list(SN2011fe),
as.list(SN2011fe newdata)), data = SN201llfe$flux)

R> prob$optimizeLogDens(method = ‘L-BFGS-B’, lower = rep(le-15, nParams))

R> pred <- prob$predict(ret = TRUE, se.fit = TRUE)

R> realiz <- prob$%$simulateRealizations(r = 1000, post = TRUE)

Wavelength

Results

Predictions on subdomain on a grid in time and wavelength for 55,379 points
Numerical issues arise in bigGP (no pivoting) for finer grids (numerically non-positive def.)
Credible intervals based on 1000 posterior draws, using MLE parameter estimates

6100 6150 6200

6050

(a)

-10 0 10 20
Day

Velocity
1.2e+07

1.6e+07

8.0e+06

(b)

-10 0 10 20
Day

* For methodological work on inferring minima, see Lee, Kaufman and Thomas:
http://www.stat.berkeley.edu/~cgk/papers/assets/lee2013.pdf

bigGP: Parallelizing Gaussian Process Calculations in R 12

Next steps

e Will try to continue to support bigGP at basic level in spare
time

* Current kriging code allows flexible mean and covariance
specification, but for a basic model

* Low-level API allows flexible use of linear algebra calls, so
others could build more general and flexible models using
the API

 pbdR is another option and more general

