Parallelizing Gaussian Process Calculations in R

Christopher Paciorek UC Berkeley Statistics

Joint work with:

Benjamin Lipshitz	UC Berkeley EECS (formerly)
Wei Zhuo	IBM
Prabhat	Lawrence Berkeley National Laboratory
Cari Kaufman	UC Berkeley Statistics (formerly)
Rollin Thomas	Lawrence Berkeley National Laboratory

<u>www.jstatsoft.org/v63/i10</u> <u>https://github.com/paciorek/bigGP</u>

JSM, August 2015

Funded by DOE Office of Advanced Scientific Computing Research (AC02-05CH22131) and supported by NERSC

A basic Gaussian process (GP) model

 $Y|g, \theta \sim N(g, C_y(\theta))$ $g|\theta \sim N(\mu(\theta), C_g(\theta))$

$$f(\boldsymbol{y}) \propto \left| \boldsymbol{C}_{y}\left(\boldsymbol{\theta}\right) + \boldsymbol{C}_{g}\left(\boldsymbol{\theta}\right) \right|^{-\frac{1}{2}} \cdot \exp\left(-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^{T}(\boldsymbol{C}_{y}\left(\boldsymbol{\theta}\right) + \boldsymbol{C}_{g}\left(\boldsymbol{\theta}\right))^{-1}(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))\right)$$

Computational goals for GP calculations:

- Likelihood optimization
- Prediction
- Prediction uncertainty
- Simulation (unconditional and conditional on data)

Computational patterns for GP calculations:

- Construct covariance matrices (training and prediction points)
- Cholesky decomposition
- Forward/backsolve
- Matrix multiplication (various forms: matrices, vectors, crossproducts, diagonal matrices, etc.)

Responses to computational considerations

Change the model

- Sparsify the covariance/precision matrix
- Reduce dimensionionality (e.g., basis functions)
- Predict based on subset of data / local models
- Approximate the likelihood

Use a lot of processing power

- Shared memory (multicore architecture)
- GPUs
- Distributed memory (clusters, supercomputers)

Our approach

- Use many cores to distribute computation and memory
- Hybrid parallelization = distributed processing (MPI) + threaded computation (OpenMP)
- Original plan to use ScaLapack from R (pbdR now does this)
- bigGP: tailor parallel linear algebra algorithms to Cholesky decomposition (rate-limiting step) and interface to R

Blockwise Cholesky (Crout's algorithm)

bigGP: Parallelizing Gaussian Process Calculations in R

Computational considerations

Questions

- How many submatrices / how big
- How many submatrices (and which ones) per node or per process
- How many processes per multi-core node / should individual submatrix calculations be threaded

Basic tradeoffs

- Efficient local computation (increase block size up to point that submatrix doesn't fit in cache)
- Load-balancing (want all processors active)
- Reduce communication (pass less information between processes)

Computational approach

Suppose we have P=10 processes and D=4 blocks. We could have one submatrix per process (left with blocking factor B=4 and h=1) or multiple submatrices per process (right with replication factor h=3 and blocking factor of B=hD=12)

۲ 2	। ॑॑ੑੑੑੑੑੑੵੵਗ਼	1									
	ک ر ۲	+ <u>-</u> -	1								
3	6	8	L								
4	7	9	10	 L							
1	2	3	4	৸ৢ							
2	5	6	7	2	5						
3	6	8	9	3	6	8	1				
4	7	9	10	4	7	9	10				
1	2	3	4	1	2	3	4	শি			
2	5	6	7	2	5	6	7	2	ั 5	 L	
3	6	8	9	3	6	8	9	3	6	8	 L
4	7	9	10	4	7	9	10	4	7	9	10

Computational approach

Answers:

How many blocks (submatrices) / how big:

Your choice but 1000x1000 may be good; submatrix size is $\sim n/hD$ where P=D(D+1)/2

How many submatrices (and which ones) per node or per process:

Your choice of h. We allocate submatrices to processes for you.

- How many processes per node / should individual block calculations be threaded: One process per node with threading, but might define a "node" as a subset of processors on cluster machine – e.g. divide 24 cores into 4 6-core "nodes"
 Comments
- Our allocation of which submatrices are grouped on a process improves loadbalancing
- Using multiple submatrices per process and one process per "node" reduces communication
- Flexible choice of #submatrices per process allows tailoring of submatrix size to cache
- Flexible number of cores per process (cores on a virtual node) allows hybrid parallelization that balances threading vs. additional virtual nodes

bigGP: Parallelizing Gaussian Process Calculations in R

Software design of the *bigGP* package

- Initialization (from R) initializes multiple processes and sets up how submatrices are assigned to processes
- All computations done in a distributed fashion and sequential operations (e.g., Cholesky, then forwardsolve then matrix multiplication) carried out as pipeline
- Core distributed linear algebra operations (Cholesky, forwardsolve, matrix multiplication, etc.) are done via MPI from C
- *bigGP* API controls operations from R
 - Functions for managing objects on worker processes and moving general objects between master and workers
 - Functions for distributing and collecting distributed matrices/vectors between master and workers, hiding details of what is stored where and in what format
 - Wrapper functions that carry out the distributed linear algebra by calling the core C/MPI code
- Specific kriging (likelihood optimization) implementation via *krigeProblem* ReferenceClass and member functions that carry out:
 - Construction of mean and covariance (in distributed fashion) using user-defined functions
 - Calculation of log density
 - Prediction with uncertainty
 - Simulation either conditional or unconditional on data

Astrophysics example

- Analysis by C. Kaufman in collaboration with R. Thomas
- Data are flux from the Type Ia supernova SN2011fe, as a function of wavelength and day
 - n = 67,275
- Interest lies in smoothing the data and estimating the wavelength of minimum flux

bigGP: Parallelizing Gaussian Process Calculations in R

Statistical model and code

 $Y_i = Z(t_i, w_i) + \alpha_{t_i} + \epsilon_i$ $Z \sim GP(\mu(\cdot; \kappa, \lambda), \sigma^2 K(\cdot, \cdot; \rho_t) K(\cdot, \cdot; \rho_w))$

- Random effects, alpha, for each day
- Known, heteroscedastic error variances based on instrumentation
- Covariance of product form in the two dimensions
- Mean function (of time only) based on empirical pattern of variation with wavelength
- 465 processes, 6 cores per process, 117 nodes on NERSC's Hopper supercomputer
- R code:
- R> prob <- krigeProblem\$new('prob', numProcesses = 465, meanFunction =
 SN2011fe_meanfunc, predMeanFunction = SN2011fe_predmeanfunc, covFunction
 = SN2011fe_covfun, crossCovFunction = SN2011fe_crosscovfun,
 predCovFunction = SN2011_predcovfun, inputs = c(as.list(SN2011fe),
 as.list(SN2011fe_newdata)), data = SN2011fe\$flux)</pre>
- R> prob\$optimizeLogDens(method = 'L-BFGS-B', lower = rep(1e-15, nParams))
- R> pred <- prob\$predict(ret = TRUE, se.fit = TRUE)</pre>
- R> realiz <- prob\$simulateRealizations(r = 1000, post = TRUE)</pre>

Results

- Predictions on subdomain on a grid in time and wavelength for 55,379 points
- Numerical issues arise in bigGP (no pivoting) for finer grids (numerically non-positive def.)
- Credible intervals based on 1000 posterior draws, using MLE parameter estimates

 For methodological work on inferring minima, see Lee, Kaufman and Thomas: <u>http://www.stat.berkeley.edu/~cgk/papers/assets/lee2013.pdf</u>

Next steps

- Will try to continue to support bigGP at basic level in spare time
- Current kriging code allows flexible mean and covariance specification, but for a basic model
- Low-level API allows flexible use of linear algebra calls, so others could build more general and flexible models using the API
- pbdR is another option and more general