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A basic Gaussian process (GP) model
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Computational goals for GP calculations:

* Likelihood optimization

* Prediction

* Prediction uncertainty

« Simulation (unconditional and conditional on data)

Computational patterns for GP calculations:

* Construct covariance matrices (training and prediction points)
* Cholesky decomposition

* Forward/backsolve

* Matrix multiplication (various forms: matrices, vectors, crossproducts,
diagonal matrices, etc.)



Responses to computational considerations

Change the model

 Sparsify the covariance/precision matrix

* Reduce dimensionionality (e.g., basis functions)
* Predict based on subset of data / local models
* Approximate the likelihood

Use a lot of processing power

e Shared memory (multicore architecture)

* GPUs

* Distributed memory (clusters, supercomputers)

Our approach

* Use many cores to distribute computation and memory

* Hybrid parallelization = distributed processing (MPI) + threaded computation
(OpenMP)

e Original plan to use ScalLapack from R (pbdR now does this)

* bigGP: tailor parallel linear algebra algorithms to Cholesky decomposition
(rate-limiting step) and interface to R



Blockwise Cholesky (Crout’s algorithm)
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Computational considerations

Questions

* How many submatrices / how big

* How many submatrices (and which ones) per node or per process

 How many processes per multi-core node / should individual submatrix
calculations be threaded

Basic tradeoffs

* Efficient local computation (increase block size up to point that submatrix
doesn’t fit in cache)

* Load-balancing (want all processors active)

 Reduce communication (pass less information between processes)



Computational approach

Suppose we have P=10 processes and D=4 blocks. We could have one submatrix per
process (left with blocking factor B=4 and h=1) or multiple submatrices per process
(right with replication factor h=3 and blocking factor of B=hD=12)
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Computational approach

Answers:
 How many blocks (submatrices) / how big:

Your choice but 1000x1000 may be good; submatrix size is ~ n/hD where P=D(D+1)/2
* How many submatrices (and which ones) per node or per process:

Your choice of h. We allocate submatrices to processes for you.

One process per node with threading, but might define a “node” as a subset of
processors on cluster machine — e.g. divide 24 cores into 4 6-core “nodes”
Comments
* Our allocation of which submatrices are grouped on a process improves load-
balancing
e Using multiple submatrices per process and one process per “node” reduces
communication
* Flexible choice of #submatrices per process allows tailoring of submatrix size to cache
* Flexible number of cores per process (cores on a virtual node) allows hybrid
parallelization that balances threading vs. additional virtual nodes
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Execution time, seconds (log scale)

Cholesky decomposition, n=32768
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Software design of the bigGP package

* Initialization (from R) initializes multiple processes and sets up how submatrices are
assigned to processes
* All computations done in a distributed fashion and sequential operations (e.g.,
Cholesky, then forwardsolve then matrix multiplication) carried out as pipeline
e Core distributed linear algebra operations (Cholesky, forwardsolve, matrix
multiplication, etc.) are done via MPI from C
* bigGP API controls operations from R
* Functions for managing objects on worker processes and moving general
objects between master and workers
* Functions for distributing and collecting distributed matrices/vectors between
master and workers, hiding details of what is stored where and in what format
 Wrapper functions that carry out the distributed linear algebra by calling the
core C/MPI code
» Specific kriging (likelihood optimization) implementation via krigeProblem
ReferenceClass and member functions that carry out:
e Construction of mean and covariance (in distributed fashion) using user-defined
functions
e Calculation of log density
* Prediction with uncertainty
e Simulation either conditional or unconditional on data



Astrophysics example

* Analysis by C. Kaufman in collaboration with R. Thomas

e Data are flux from the Type la supernova SN2011fe, as a function of wavelength and day
* n=67,275

* Interest lies in smoothing the data and estimating the wavelength of minimum flux
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Statistical model and code

Y; = Z(t;, w;) + ay, + €
Z~GP(u(;k,A),02K(-,; p ) K(Cp; pw )

 Random effects, alpha, for each day

 Known, heteroscedastic error variances based on instrumentation

e Covariance of product form in the two dimensions

 Mean function (of time only) based on empirical pattern of variation with
wavelength

* 465 processes, 6 cores per process, 117 nodes on NERSC’s Hopper supercomputer

 Rcode:

R> prob <- krigeProblem$new(‘prob’, numProcesses = 465, meanFunction =
SN2011fe meanfunc, predMeanFunction SN2011fe predmeanfunc, covFunction
= SN2011fe _covfun, crossCovFunction SN2011fe crosscovfun,
predCovFunction = SN2011 predcovfun, inputs = c(as.list(SN2011fe),
as.list(SN2011fe newdata)), data = SN201llfe$flux)

R> prob$optimizeLogDens(method = ‘L-BFGS-B’, lower = rep(le-15, nParams))

R> pred <- prob$predict(ret = TRUE, se.fit = TRUE)

R> realiz <- prob$%$simulateRealizations(r = 1000, post = TRUE)



Wavelength

Results

Predictions on subdomain on a grid in time and wavelength for 55,379 points
Numerical issues arise in bigGP (no pivoting) for finer grids (numerically non-positive def.)
Credible intervals based on 1000 posterior draws, using MLE parameter estimates
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* For methodological work on inferring minima, see Lee, Kaufman and Thomas:
http://www.stat.berkeley.edu/~cgk/papers/assets/lee2013.pdf

bigGP: Parallelizing Gaussian Process Calculations in R 12




Next steps

e Will try to continue to support bigGP at basic level in spare
time

* Current kriging code allows flexible mean and covariance
specification, but for a basic model

* Low-level API allows flexible use of linear algebra calls, so
others could build more general and flexible models using
the API

 pbdR is another option and more general



