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Uses of Data and Statistics with Deterministic Models

e Preprocessing: data used in various ways to create and parameterize models
e (Joint processing) Data assimilation

e Postprocessing of model output

— Model evaluation/assessment

— Model calibration and model averaging

— Downscaling (extension)

— Combining model output and data (integration)



Statistical Themes

Latent processes and variables representing unknown true state of world

Methods for combining information based on relative uncertainties in infor-
mation sources

— Data and model
— Multiple models
— Multiple data sources

Scales of variability (time and space)

Characterization of uncertainty and accounting for uncertainty in both models
and observations

Upscaling (easy) vs. downscaling (hard)



Outline

Model evaluation/assessment

Calibrating parameters in models and averaging models based on data

— degree of belief in model: relatively high
Statistical downscaling

Combining models and data via statistical representations

— degree of belief in model: relatively low
— techniques also useful for low resolution reanalysis data or remote sensing
data



Sources of uncertainty

e Model output decomposition

- Oy =Xi + My + P+ I + S5; + 1 + Ny

— X, true state of nature (a spatial field); M; model error; P, parameter error;
I; input/starting value error; S; smoothing error (from gridding); 7; time
averaging error; N; numerical or approximation error

e Observation decomposition

- Dy =Xy + 1y + By
— X, true state of nature (a spatial field); 7; time averaging error; E; mea-
surement error



Exploratory empirical evaluation of model output

model : data, model : model, low resolution data : data

individual level:

— time series plots and maps of observations and of model output

— scatterplots/regression of observations on model output at same
time/location

— plot deviations in space and time to detect spatio-temporal patterns

— regress deviations (model-observation) on factors that may explain differ-
ences

summary level:

— calculation of correlations: aggregate over space or time
— regress correlations on factors that may explain differences
— plot correlations in space and time to detect spatio-temporal patterns

may want to consider observation error in your evaluation (e.g., error bars
around observations in plots; analyses with observations weighted by their

uncertainty) .



Space-time mismatch?

e oObservations are often point locations whereas model output is areal aver-
ages

e Observations may be time averages (e.g., EPA daily PM) whereas model out-
put might be shorter time aggregations

e Possible solutions:

— for spatially smooth quantities, ignore spatial mismatch
— upscaling
x average the higher resolution data to the lower resolution, potentially
accounting for uneven time and spatial spacing
« statistically smooth high resolution spatial data, then average smoothed
surface over model grid box (Meiring et al. 1998)
« for latter two approaches, estimate uncertainty level in the manipulated
data



Comparison of GOES satellite data with EPA PM
observations

half-hourly GOES aerosol (AOD) observations (with many missing) at 4km
resolution

daily PM observations at point locations

how strong is the relationship and does the strength of the relationship differ
by time and location?

spatial mismatch: ignored

temporal mismatch: use time series model to estimate daily AOD account-
ing for pattern of missing data: [i; # D, but rather a weighted average that
upweights observations far from other observations in time (upscaling)



Graphical spatio-temporal comparison
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Other approaches to model evaluation

e evaluate space-time correlation structures of data and model output (Jun and
Stein 2004)

e build a statistical model that relates model output and data (Fuentes and
Raftery 2005)

— estimate spatio-temporal pattern in bias of model output within statistical
model

— statistical model accounts for data uncertainty and internally calibrates
model uncertainty

— statistical model can build in necessary aggregation to put model and data
on same temporal and spatial scale and account for the uncertainty in the
aggregated quantities

e more details on building such a model later



Outline

Model evaluation/assessment

Calibrating parameters in models and averaging models based on data

— degree of belief in model: relatively high
Statistical downscaling

Combining models and data via statistical representations

— degree of belief in model: relatively low
— techniques also useful for low resolution reanalysis data or remote sensing
data
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Using Data to Improve Models and Model Output

Some degree of trust in the model(s)

e Parameter calibration (Kennedy and O’Hagan 2001)

— vary parameters and compare fit of model output to data

— create a posterior distribution over parameter values that reflects uncer-
tainty about parameters based on data

— w(0|D) o« L(D|M(0))m(0)

— average model output over different parameter settings weighted by pos-
terior distribution of parameters

— a statistical model in which the calibration is done can also provide statis-
tical estimates of remaining model uncertainty
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Using Data to Improve Models and Model Output

e Model averaging (Raftery et al. 2005)

— compare fits of multiple models to data

— create a posterior distribution over models reflecting model uncertainty
based on data

— m(M;|D) < L(D|M;)m(M;) = [ L(D|M;(0)7 (6| M;)7(M;)do

— average output from models weighted by posterior probabilities of models

= E(f(s,t)) = 2_; f(s, 1| My)m(M;| D)

— statistical model can account for bias in each model and remaining uncer-
tainty in model average output
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Statistical Downscaling

Prediction of fine-resolution features based on coarse-scale information and
a statistical model for local effects

e Temporal prediction/extrapolation (probabilistic prediction) for fixed sites at
new times

— regression on model output statistics (MOS) (e.g., Vislocky & Fritsch 1995)
— weather typing approaches (Bellone et al. 2000, Vrac et al. 2006)
— stochastic weather generators

e Temporal interpolation for missing time points (e.g., polar-orbiting satellites)
(Wikle et al. 2001 - Bayesian model combining reanalysis and finer-resolution
satellite data)

e Spatial interpolation at finer scale than observations (e.g., fine-scale PM ex-
posure for epidemiology) (Paciorek, Yanosky, and Suh, in prep.)

13



Downscaling for temporal prediction/extrapolation

e fixed sites provide data that allow us to related large-scale information to
site-specific effects

e e.g., downscaling GCM or reanalysis output to individual sites

e regression on MQOS:

— regression or related techniques (GAM) to relate GCM output variables
directly to site specific variables of interest (e.g., precipitation) for training
period

= L4t — fz(Xt)

— prediction of variables of interest at sites using GCM output variables at
new times

- Y= fi(X)
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Downscaling for temporal prediction/extrapolation

e weather typing (Bellone et al. 2000; Vrac et al. 2006)

— instead of a giant regression on GCM variables, try to relate GCM variables
to a small number of local ‘'weather’ states

— states defined based on patterns of local variable (e.g., a state of uniform
rain; a state with rain in north of region)

— model weather state transitions as a Markov model influenced by baseline
transition probabilities and GCM variables

— model variable of interest at each site as a regression function of weather
state and possibly GCM variables also

— stage 1: S, = f(Si—1,Xy) stage 2: Y = fi(St)

e extension of Hughes et al. 1999 approach may allow for spatial interpolation
away from fixed sites

e extrapolation in time relies on assumption that relationships stay constant
over time and any changes are caused by changes in the inputs (e.g., GCM
variables)
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Downscaling for spatial interpolation

Goal is to predict PM at fine scales for use as exposure in epidemiological
models

Data are EPA PM monitors but pure spatial smoothing is too coarse

Regression of EPA PM monitoring data on site characteristics and a smooth
spatial structure via a generalized additive model: ys; = fi(s)+> . Xwe(s) Bk +

€st

g+(s) is spatial smoother that accounts for large scale spatial patterns at time
t

> .. Xke(s)Br accounts for local offset based on local characteristics whose
effect is assumed to stay constant over time

possible use of this approach to spatially downscale CMAQ and satellite out-
put for PM prediction
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Outline

Model evaluation/assessment

Calibrating parameters in models and averaging models based on data

— degree of belief in model: relatively high
Statistical downscaling

Combining models and data via statistical representations

— degree of belief in model: relatively low
— techniques also useful for low resolution reanalysis data or remote sensing
data
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Statistical integration/fusion of model output and data

of greatest potential when trust in model is limited?

strengths of statistical models that integrate model output and data:

— best prediction based on all information

— inherent model evaluation and estimation of model bias

— account for both model and data uncertainty

— inherent calibration of uncertainty and uncertainty estimates
— aggregation consistency can be built into the model

— model output can be treated as a black box
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Possible statistical formulations

e Bayesian statistical model with physical model as prior for latent space-time
process

— yst = f(s,t) +est  f(s,t) =a(s,t) +b(s,t)M(s,t)

e Statistical model for error structure

— create a spatio-temporal model for O — vy
- e.g., Ost — Yst — f(S,t) —+ (Y
— add modelled error back to physical model output to correct the physical

model
— spatio-temporal structure of errors may be simpler than of nature
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Possible statistical formulations

Bayesian melding: Bayesian statistical model with observations and physical

model treated as ‘data’ (Fuentes and Raftery 2005)

Yst = f(S,t) + €st

O(area)s = [ (a(s,t) + b(s,t)f(s,t) + €(s,t)) ds

prior distribution for f(s,t), unknown latent process ('true’ state of nature)

integration accounts for areal aggregation

0

bias
correction / areal
integration

smoothness
constraints

Y

latent 'true’ PM surface

satellite data

g,5)
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Bayesian melding: Bells and whistles

statistical technigue for combining information sources

Bayesian statistical models allow for complicated probabilistic relationships
and constraints on exposure surfaces

constraints ensure smooth estimated exposure surfaces and borrow strength
to estimate in areas with no data

incorporate local characteristics to do spatial interpolation (spatial downscal-
Ing)

similar specification with two sets of data, although possibly no bias term and
no aggregation

similar model specification with satellite data instead of physical model
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Uncertainty considerations

statistical models can account for uncertainty in a probabilistically rigorous
fashion

— (inputs) weight observations based on certainty
— (inputs) weight parameter values/models based on certainty
— (outputs) propagate uncertainty through analysis to final estimates

uncertainty can be estimated based on:

— quantification of the levels of uncertainty in the observations (e.g., from
instrument manufacturers)

— repeated measurements or measurements at nearby locations or times

— ground truth against which to internally calibrate (e.g., model output to
observations)
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Outline

Model evaluation/assessment
Calibrating parameters in models and averaging models based on data
Statistical downscaling (model extension)

Combining models and data via statistical representations

— techniques also useful for low resolution reanalysis data or remote sensing

data
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