Enabling efficient MCMC sampling with user-chosen samplers and automated
parameter blocking in NIMBLE (r-nimble.org)

Daniel Turek!?, Perry de Valpine?, Christopher Paciorek!

IDepartment of Statistics, UC Berkeley; ?Department of Environmental Science Policy and Management, UC Berkeley

The NIMBLE system

NIMBLE is
= A system for using algorithms on hierarchical statistical models
(defined by BUGS code),

= A system for programming algorithms to be used on hierarchical
models,

= A partial compiler for math in R, and
= A flexible extension of the BUGS and JAGS systems.

Why use NIMBLE rather than other packages?

= Customize your MCMC: choose samplers and blocking arbitrarily;

Define your own distributions and functions for use in BUGS code;
Apply algorithms other than MCMC to a BUGS-defined model:
SMC/particle filter, MCEM, etc.;

Write your own algorithms (including MCMC samplers) that can
be used on any BUGS model; and

Disseminate algorithms via an R package containing specific
algorithm code and a dependency on the NIMBLE package.

Outline of the poster

Here we'll focus on using the system to improve MCMC performance,
considering three strategies:

= Customizing your MCMC with user-chosen samplers and blocking
(left column)
» Automating blocking of parameters (center column)

= Writing your own MCMC sampler, which can then be used on any
model (right column)

Using NIMBLE for tuning an MCMC

Example model: litters

There are G = 2 groups of rat litters, with N = 16 litters (i.e.,
mothers) in each group, and a variable number of pups in each litter.
Survival of the pups in a litter is governed by a survival probability for
each litter, p; ;, with an exchangeable beta prior within each group.
The model shows poor MCMC performance because of (1) dependence
between hyperparameters for a given group and (2) dependence betwen
hyperparameters and associated random effects of a given group.

BUGS code as used in NIMBLE

code <- nimbleCode({

for (iin 1:G) {
“"--.. n. . for (jin 1:N) {
1] # likelihood (data model)

r[i,j] ~ dbin(p[i,j], n[i,j])

latent process (random effects)
pli,j] ~ dbeta(ali], b[i])
@ }

prior for hyperparameters
ali] ~ dgamma(1, .001)
b[i] ~ dgamma(1, .001)

Group j Litteri }
b

Define a default MCMC as in JAGS and BUGS

Set up the model (based on the BUGS code) and a default MCMC.
This involves a few more steps than in BUGS or JAGS, but with the
benefit that NIMBLE gives you greater control over how you use the
model and set up an MCMC (or other algorithms).

model <- nimbleModel(code, constants = consts, data = data, inits = inits)
conf <- configureMCMC(model)

confSaddMonitors(c('a’, 'b', 'p'))

mcmc <- buildMCMC(conf)

Cmodel <- compileNimble(model)

Cmcmc <- compileNimble(mcmc, project = model)

niter <- 10000

CmcmcSrun(niter)

smp <- as.matrix(CmcmcSmvSamples)

Here are trace plots for the default MCMC, showing poor mixing and
strong dependence within pairs of hyperparameters.

a; by az by

1000
150
10 15 20

f:
600
0 1 2 3 4 5 6

0 200

T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Choose the blocking scheme

NIMBLE allows users to swap out samplers and choose blocking
schemes. Here we'll block the hyperparameters for each group.
confSremoveSamplers(c('a’, 'b'))

confSaddSampler(c('a[1]', 'b[1]"), 'RW_block')

confSaddSampler(c('a[2]', 'b[2]'), 'RW_block’)

mcmc <- buildMCMC(conf)

Cmcmc <- compileNimble(mcmc, project = model, resetFunctions = TRUE)
CmcmcSrun(niter)

a; by a b,

5000

10 15 20

blocked hyp:
3000
0 100 200 300 400 500

0o 1 2 3 4 5 6

0 1000

T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Use a specialized sampler

Blocking worked better but didn't account for dependence of the hy-
perparameters with their associated random effects (cross-level depen-
dence). We'll replace the basic block sampler with a more sophisticated
sampler that samples hyperparameters and associated random effects
jointly, using random walk proposals for hyperparameters and (condi-
tional) conjugate proposals for the random effects. It's equivalent to
integrating over the random effects analytically and sampling from the
marginal for the hyperparameters.

confSremoveSamplers(c('a’, 'b', 'p'))

confSaddSampler(c('a[1]', 'b[1]'), 'crossLevel')

confSaddSampler(c('a[2]', 'b[2]'), 'crossLevel')

mcmc <- buildMCMC(conf)

Cmcmc <- compileNimble(mcmc, project = model, resetFunctions = TRUE)
CmcmcSrun(niter)

a by a by

10 15 20

blocked hyps-+effects
0 2000 4000 6000 8000
0 200 400 600 800 1000

0O 1 2 3 4 5 6

T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Automating MCMC sampler choices

Motivation

Adaptive random walk block Metropolis has been successful in
providing tuned proposals that account for dependence.

But the choices of what samplers to use and what parameters to
block are still done 'manually’ by the analyst.

Goal is to provide algorithms that search space of valid MCMC
samplers for better MCMC performance.

= Key metric is effective sample size per computing time.

Trading off MCMC and computational efficiency

For a d-dimensional parameter, there are advantages and disadvan-
tages in choosing between the use of d univariate samplers and a single
d-dimensional block update.

Univariate random walk Multivariate random walk

= Computational: d univariate proposals: = Computational: one multivariate proposal
dx O(1) => O(d) that is O(d?)

= Computational: (only if have multivariate Computational: (only if have multivariate
density) d x O(d?) => O(d?) density density) O(d?) density calculation
calculation

= Statistical: no accounting for dependence ® Statistical: accounts for linear dependence

® Statistical: Optimal proposal scales as = Statistical: Optimal proposal scales as
o x 1 o? o 2, so multivariate sampling has a

built-in disadvantage

Model
15 - Structure

— Normal

---- Gamma

--- MV Normal ’

MCMC S

Algorithm #)5
All Scalar /

/7 i
— All Blocked e
VAR

Runtime (seconds per 10,000 MCMC samples)

I I I I I
0 100 200 300 400 500
Model dimension (d)

Automated blocking algorithm

As an initial approach to automating MCMC sampler choice, we de-
veloped an automated blocking procedure to choose effective blocking
for a given model and computation platform.

@ Initialize by running MCMC using univariate updaters.

® Compute empirical correlations p; ;. from current algorithm
(blocking scheme).

© Construct hierarchical clustering tree via hclust () based on
distance metric: d;, =1 — [p;xl.

© Run multiple chains, each with a different degree of blocking
determined by cutting the tree from (3) at various heights.

@ Choose the cut point (blocking) with highest effective sample size
as the best blocking scheme.

@ If best blocking scheme is still in flux, go to (2) with blocking
scheme from (5) as current algorithm; otherwise choose the
current blocking scheme as the algorithm to use to generate final
posterior samples.

The automated blocking procedure is available within NIMBLE by call-
ing configureMCMC like this: conf <- configureMCMC(model,
autoBlock = TRUE) before building and running the MCMC.

Automated blocking results

MCMC performance results for suite of example models

Model MCMC Scheme ESS Runtime Efficiency

All Blocked 0.4 0.29 1.3

Default 1.1 1.19 1.0

Random All Scalar 2.1 0.51 4.2
Effects Informed Blocking 19.0 0.50 38.2
Informed Cross-Level 101.3 2.64 38.5

Auto Blocking 19.0 0.48 39.2

Auto. All Blocked 8.9 0.3 27.3
Regressive All Scalar 6.5 0.6 11.5
Auto Blocking 12.7 0.3 37.5

All Blocked 0.3 0.8 0.4

State Space Default 27.6 4.6 6.0
Independent All Scalar 20.2 1.3 15.7
Auto Blocking 29.1 1.3 22.4

All Blocked 0.6 0.7 0.8

State Space Default 1.7 4.9 0.4
Correlated All Scalar 1.1 1.3 0.8
Informed Blocking 18.4 1.2 15.6

Auto Blocking 26.1 1.2 20.9

All Blocked 0.2 571 0.04

Spatial Default 0.4 10.86 0.04
All Scalar 171.3 83.87 2.0

Auto Blocking 1208.0 78.62 15.4

All Blocked 2.2 443 0.05

GLMM All Scalar 60.9 22.6 3.0
Auto Blocking 60.9 22.6 3.0

Table : Effective sample size (ESS) is measured in effective samples per 10,000
iterations, Runtime is presented as seconds per 10,000 iterations, and Efficiency
is effective samples produced per second of runtime.

N
o
|

MCMC Algorithm
—— All Blocked
—— Default

w
o
|

—— All Scalar

—— Auto Blocking

Efficiency (effective samples / time)

o
|

1 1 1 1 1 1
Random Auto St. SpaceSt. Space Spatial GLMM
Effects Regressive Indep. Corr.

Next steps

= Explore theory to justify retaining samples during adaptation
phase.

= Automate exploration of sampler choices (including
reparameterization), not just blocks.

= |n exploration phase, use multiple updaters on a single parameter
or multiple blocking schemes within an iteration to enable more
efficient optimization amongst the updaters.

Programming with models

Background and motivation
= S (and R) revolutionized statistics and

data analysis by putting data front and
center.

John M. Chambers

PROGRAMMING
WITH DATA

= Existing software provides great power
for fitting models via the algorithms
chosen by the developers.

A Guide to the S Language

= We want to enable analysts and
developers to more easily program
algorithms to operate on models.

= Developers can then easily disseminate

algorithms to users.

The NIMBLE language

NIMBLE provides a domain specific language (DSL) for writing model
generic algorithms via nimbleFunctions, which contain two compo-
nents:

= setup code: specializes algorithm to model by querying model
relationships and setting up data structures

= run code: model-generic code to execute the algorithm that can
use information determined in setup code

NIMBLE processing flow

DSL code withi
codae within .Cpp and .h files

. 4

nimbleFunction .
0 in R TMPDIR
. S
Parsein R g g++/llvm/etc.
N
Vv > Vv
Parse tree F
3 DLL in R TMPDIR
of code ad
£
Process to a § Generation of R
Reference Class wrapper functions
inR that use .Call
Abstract Access via wrappers
syntax tree fromR

Writing an algorithm: a simple example
Here's how to write a basic objective function (which could be passed
to an optimization function such as R’s optim).

» setup code: needs to determine which nodes are dependencies so
the run code knows which quantities to calculate.

= run code: computes log probability density for all relevant nodes
for any model

objectiveFunction <- nimbleFunction (
setup = function(model, nodes) {
calcNodes <- modelSgetDependencies(nodes)
b
run = function(vals = double(1)) {
values(model, nodes) <<- vals
sumLogProb <- calculate(model, calcNodes)

—_

guery model
[structure ONCE

—
—_

| the actual
return(sumLogProb) algorithm
returnType(double())
})

Writing a user-defined MCMC sampler

We use nimbleFunctions to define new samplers, including the cross-
level sampler in column 1.

Here's an example of how a user could readily implement use of reflec-
tion in a random walk sampler.

sampler RW _reflect <- nimbleFunction(
contains = sampler_BASE,
setup = function(model, mvSaved, target, control) {
dist <- modelSgetNodeDistribution(target)
rg <- getDistribution(dist)Srange
if(rg[1] > -Inf | | rg[2] < Inf)
reflect <- TRUE else reflect <- FALSE
calcNodes <- modelSgetDependencies(target)
7
run = function() {
propValue <- rnorm(1, mean = model[[target]], sd = scale)
if(reflect) {
if(propValue < rg[1]) propValue <- 2*rg[1] - propValue
if(propValue > rg[2]) propValue <- 2*rg[2] - propValue
}
model[[target]] <<- propValue
logMHR <- calculateDiff(model, calcNodes)
jump <- decide(logMHR)
if(jump)
nimCopy(from = model, to = mvSaved, row = 1, nodes = calcNodes)
else
nimCopy(from = mvSaved, to = model, row = 1, nodes = calcNodes)

)

We can then directly use the new sampler for a given node in an MCMC

on a model:

conf <- configureMCMC(model)
conf$addSampler(’tau’, type = ’RW_reflect’)
mcme <- buildMCMC(conf)

References and acknowledgements

The NIMBLE system:

= de Valpine, P., D. Turek, C.J. Paciorek, C. Anderson-Bergman, D.
Temple Lang, and R. Bodik. 2016. Programming with models:
writing statistical algorithms for general model structures with
NIMBLE. Journal of Computational and Graphical Statistics, in
press. doi: 10.1080/10618600.2016.1172487.

The automated blocking algorithm:

= Turek, D., P. de Valpine, C.J. Paciorek and C.
Anderson-Bergman. Automated parameter blocking for efficient
Markov chain Monte Carlo sampling. Bayesian Analysis, in press.

This work was supported by grant DBI-1147230 from the US National
Science Foundation and by support to DT from the Berkeley Institute
for Data Science.

> NIMBLE

