Extensible software for
hierarchical modeling:
using the NIMBLE platform to

explore models and algorithms
Christopher Paciorek UC Berkeley Statistics

Joint work with:
Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Managem’t
Daniel Turek UC Berkeley Statistics and ESPM
Cliff Anderson-Bergman UC Berkeley Statistics and ESPM
Duncan Temple Lang UC Davis Statistics

http://r-nimble.org

Background and Goals

Software for fitting hierarchical models has opened
their use to a wide variety of communities

Most software for fitting such models is either model-
specific or algorithm-specific

Software is often a black box and hard to extend

Our goal is to divorce model specification from
algorithm, while

— Retaining BUGS compatibility

— Providing a variety of standard algorithms

— Allowing developers to add new algorithms (including
modular combination of algorithms)

— Allowing users to operate within R
— Providing speed via compilation to C++, with R wrappers

Divorcing Model Specification
from Algorithm

MCMC Flavor 1

@ @ @ MCMC Flavor 2
Data cloning
@ @ @ Particle Filter
MCEM

Quadrature Importance Sampler

Your new method

Unscented KF

NIMBLE Design

- High-level processing in R (as much as possible)

* Process BUGS language for declaring models (with some extensions)

* Process model structure (node dependencies, conjugate relationships,
etc.)

* Generate and customize algorithm specifications

* Generate model-specific C++ code to be compiled on the fly

* Provide matching implementation in R for prototyping / debugging /
testing

* Some high-level algorithm control possible in R (adapting tuning
parameters, monitoring convergence, high levels of iteration)

* Low-level processing in C++

* Model and algorithm computations

* “Run-time” parameters allow some modification of behavior without
recompiling

User Experience: Creating a Model from BUGS

littersModelCode <- quote({ @
for(j in 1:G) { @

for(lin 1:N) { @
rfi, 1 ~ dbin(pli, j], ni, j]); e
pli, j] ~ dbeta(a[j], b[jl);

}

mul(j] <- a[jl/(alj] + b[jl); @)

thetalj] <- 1.0/(a[j] + b[j]); 4

a[j] ~ dgamma(1, 0.001); [] mum

b[j] ~ dgamma(1, 0.001);

Parse and process BUGS code.
Collect information in model object.

Use igraph plot method.

v

> littersModel <- nimbleModel(littersModelCode, constants = list(N = 16, G = 2), data = list(r = inputSr))
> littersModel_cpp <- compileNimble(littersModel)

Provides variables and functions
(calculate, simulate) for algorithms to
use.

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

User Experience: Specializing an Algorithm to a Model

littersModelCode <- modelCode({
for(jin 1:G) {
for(lin 1:N) {
r[i, j] ~ dbin(pli, jl, nli, j1);
pli, j] ~ dbeta(al[jl, blj]);

}

mulj] <- a[jl/(a[j] + b[jl);

theta[j] <- 1.0/(a[j] + b[j]);

a[j] ~ dgamma(1, 0.001);

b[j] ~ dgamma(1, 0.001);
)

> littersMCMCspec <- MCMCspec(littersModel)

> getUpdaters(littersMCMCspec)

[...snip...]

[3] RW sampler; targetNode: b[1], adaptive: TRUE, adaptinterval: 200, scale: 1
[4] RW sampler; targetNode: b[2], adaptive: TRUE, adaptinterval: 200, scale: 1
[5] conjugate_beta sampler; targetNode: p[1, 1], dependents_dbin: r[1, 1]

[6] conjugate_beta sampler; targetNode: p[1, 2], dependents_dbin: r[1, 2]
[...snip...]

> littersMCMCspecSaddSampler(‘slice’, list(targetNodes = c(‘a[1]’, ‘a[2]’), adaptinterval = 100))
> littersMCMCspecSaddMonitor(‘theta’)

> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileNimble(littersMCMC, project = littersModel)

> littersMCMC_Cpp (20000)

User Experience: Specializing an Algorithm to a Model (2)

littersModelCode <- quote({
for(j in 1:G) {
for(lin 1:N) {
(i, j1 ~ dbin(pli, j1, ni, j1);
pli, j] ~ dbeta(al[j], b[j]);
}
mul[j] <-a[jl/(alj] + blj]);
thetalj] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);

b[j] ~ dgamma(1, 0.001);

> littersMCEM <- buildMCEM(littersModel, latentNodes = ‘p’, mcmcControl = list(adaptinterval =
50), boxConstaints = list(list(‘a’, ‘b’), limits = c(0, Inf))), buffer = 1e-6)

> set.seed(0)

> littersMCEM(maxit = 50, m1 = 500, m2 = 5000)

Modularity (UNDER CONSTRUCTION):

One can plug any MCMC sampler into the MCEM, with user control of the sampling strategy, in place
of the default MCMC.

Programmer Experience: NIMBLE Algorithm DSL

« Analogy: BUGS is a Domain-Specific Language (DSL) for models

* NIMBLE provides a DSL for algorithms
* The DSL is a modified subset of R.

* We provide
* Basic types (double, logical)
* Basic (vectorized) math and distribution/probability calculations
 Basic data storage classes (“modelValues”)
 Control structures — for loops and if-then-else
* Ability to define functions
* Linear algebra (via the Eigen package)
* Specific functions for a model: calculate, simulate

* Function definitions in the DSL include code for two steps:
* A generic run-time function is written in the DSL for any model structure
* When a model is provided, a set of one-time setup processing is
executed in R based on the model structure to “specialize” algorithm to
model
* Run-time code can use information determined from the setup
processing

Programmer Experience: Creating an Algorithm

———,

myAlgorithmGenerator <- nimbleFunction (
setup = function(model, <otherSetupArguments>) {

code that does the specialization of algorithm to model
e.g., determine nodes to sample,
initialize storage

b

S—

run = function(<runtimeArguments>) { L‘:"I\;é’fg’fons’;o d
unction.

code that carries out the generic algorithm
for example, iterations of an algorithm
simulate into nodes, calculate log probability values

returnType(double())
return(x)

)

Usage:

specializedAlgo <- myAlgorithmGenerator(myModel, <setupArgs>)
specializedAlgo(<runtimeArguments>)

How an Algorithm is Processed in NIMBLE

DSL code within

.| -Cpp and .h files
in R TMPDIR

nimbleFunction()

Parse in R

7
Parse tree

of code

in R

v

Process to a
Reference Class

Abstract

Q<
S
=
n
v
c
=
s

syntax tree

g++/llvm/etc.

Y

DLL in R TMPDIR

Generation of R
wrapper functions

that use .Call

V4
Access via wrappers
from R

Programmer experience: Random walk updater

sampler_myRW <- nimbleFunction(contains = sampler_BASE,

setup = function(model, mvSaved, targetNode, scale) {
calcNodes <- modelSgetDependencies(targetNode)

b

run = function() {
model_lp_initial <- getLogProb(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale)
model[[targetNode]] <<- proposal
model_Ip_proposed <- calculate(model, calcNodes)
log_ MH_ratio <- model_Ip_proposed - model_Ip _initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE

if(jump) {
copy(from = model, to = mvSaved, row = 1, nodes = calcNodes, logProb = TRUE)
} else copy(from = mvSaved, to = model, row = 1, nodes = calcNodes, logProb = TRUE)

)

NIMBLE in Action: the Litters Example

Beta-binomial for clustered binary response data

littersModelCode <- quote({
for(j in 1:G) {
for(lin 1:N) {
(i, j1 ~ dbin(pli, j1, ni, j1);
pli, j] ~ dbeta(al[j], b[j]);
}
mul[j] <-a[jl/(alj] + blj]);
thetalj] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001);
1)

Challenges of the toy example:

O

Group j

(pyy) [

Litter i

* BUGS manual: “The estimates, particularly a,, a, suffer from extremely poor
convergence, limited agreement with m.l.e.”’s and considerable prior sensitivity. This
appears to be due primarily to the parameterisation in terms of the highly related a
and b, whereas direct sampling of mu; and theta; would be strongly preferable.”

e But that’s not all that’s going on. Consider the dependence between the p’s and

their a,, b; hyperparameters.

Tl

* And perhaps we want to do something other than MCMC.

Default MCMC: Gibbs + Metropolis

> littersMCMCspec <- MCMCspec(littersModel, list(adaptinterval = 100))

> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_cpp <- compileNIMBLE(littersModel, project = littersModel)
> littersMCMC_cpp(10000)

a4
o
o
o
o®
=
g5
o<
cu —
o)
52-
=
5 _W
>3
o

T T | | | |
0 500 1500 2500

600

0 200

MM

T T | | | |
0 500 1500 2500

T T | | | | T T | | |
0 500 1500 2500 0 500 1500 2500

Red line is MLE

Blocked MCMC: Gibbs + Blocked Metropolis

> littersMCMCspec2 <- MCMCspec(littersModel, list(adaptinterval = 100))

> littersMCMCspec2SaddSampler(‘RW_block’, list(targetNodes = c(‘a[1]’, ‘b[1]’),
adaptinterval = 100)

> littersMCMCspec2SaddSampler(‘RW_block’, list(targetNodes = c(‘a[2]’, ‘b[2]’),
adaptinterval = 100)

> littersMCMC2 <- buildMCMC(littersMCMCspec?)

> littersMCMC2_cpp <- compileNIMBLE(littersMCMC2, project = littersModel)

> littersMCMC2_cpp(10000)

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

15

o
o | -]
o
) ©
= o
sE- 8-
o<
(U — —
=S
(U -]
28 8 |
C - Al
S W MM
o o
[[
0 500 1500 2500 0 500 1500 2500 0 500 1500 2500 0 500 1500 2500
o
o | -]
o
©
] o
S 37
o=
%
< _
So
o8 o
(aV] o 4
] (aV]
o o
[[

T T | | | | T T | | | | T T | | | T T | | |
0 500 1500 2500 0 500 1500 2500 0 500 1500 2500 0 500 1500 2500

Blocked MCMC: Gibbs + Cross-level Updaters

* Cross-level dependence is a key barrier in this and many other models.
* We wrote a new “cross-level” updater function using the NIMBLE DSL.

* The updater is a blocked Metropolis random walk on a set of
hyperparameters with conditional Gibbs updates on dependent
nodes (provided they are in a conjugate relationship).

* This is equivalent to (analytically) integrating the dependent (latent)
nodes out of the model.

> littersMCMCspec3 <- MCMCspec(littersModel, adaptinterval = 100)

> topNodesl <- c('a[1]’, 'b[1]')

> littersMCMCspec3SaddSampler(‘crossLevel’, list(topNodes = topNodes1, adaptinterval
= 100)

> topNodes2 <- c¢('a[2]', 'b[2]')

> littersMCMCspec3SaddSampler(‘crossLevel’, list(topNodes = topNodes1, adaptinterval
= 100)

> littersMCMC3 <- buildMCMC(littersMCMCspec3)

> littersMCMC3_cpp <- compileNIMBLE(littersMCMC3, project = littersModel)

> littersMCMC3_cpp (10000)

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =

univar. adaptive
2000 4000 6000

0

blocked
2000 4000 6000

0

2000 4000 6000

cross—level

0

a4
I I I I I I
0 500 1500 2500
I I I I I
0 500 1500 2500

T T | | |
0 500 1500 2500

600

0 200

600

0 200

600

0 200

T T | | | | T T | | | T T | |
0 500 1500 2500 0 500 1500 2500 0 500 1500 2500
T T | | | T T | | | T T | |

0 500 1500 2500 0 500 1500 2500 0 500 1500 2500

|

T 1 | | | | 1 T | |
0 500 1500 2500 0 1500 2500 0 500 1500 2500

Litters MCMC: BUGS and JAGS

 BUGS gives similar performance to the default NIMBLE MCMC
* Be careful — values of Ssim.list and Ssims.matrix in R2ZWinBUGS
output are randomly permuted
* Mixing for a2 and b2 modestly better than default NIMBLE MCMC
* JAGS slice sampler gives similar performance as BUGS, but fails for some
starting values with this (troublesome) parameterization
* NIMBLE provides user control and transparency.
* NIMBLE is faster than JAGS on this example (if one ignores the
compilation time).
* Note: we’re not out to build the best MCMC but rather a flexible
framework for algorithms — we’d love to have someone else build a
better default MCMC and distribute for use in our system.

Stepping outside the MCMC box:
maximum likelihood/empirical Bayes via MCEM

> littersMCEM <- buildMCEM(littersModel, latentNodes = 'p')
> littersMCEM(maxit = 500, m1 = 500, m2 = 5000)

* Gives estimates consistent with direct ML estimation (possible
in this simple model with conjugacy for ‘p’) to 2-3 digits

* VERY slow to converge, analogous to MCMC mixing issues

e Current implementation is basic; more sophisticated
treatments should help

Many algorithms are of a modular nature/combine other algorithms, e.g.
e particle MCMC

* normalizing constant algorithms

* many, many others in the literature in the last 15 years

Status of NIMBLE and Next Steps

* First release was June 2014; lots to do, including:
— Improve the user interface and speed up compilation
— Refinement/extension of the DSL for algorithms

— Enhance current algorithms provided (e.g., add
multivariate conjugate updates for MCMC)

— Additional algorithms written in NIMBLE DSL (e.g., particle
MCMC)

— Advanced features (e.g., auto. differentiation, paralleliz’n)

* |nterested?
— Announcements: nimble-announce Google site
— User support/discussion: nimble-users Google site
— Write an algorithm using NIMBLE!

— Help with development of NIMBLE: email
nimble.stats@gmail.com or see github.com/nimble-dev

Programmer Experience: Slice Sampler Example

sampler_slice <- nimbleFunction(contains = sampler_BASE,
setup = function(model, mvSaved, control) {
targetNode <- controlStargetNode
adaptive <- controlSadaptive

calcNodes <- modelSgetDependencies(targetNode)

discrete <- modelSgetNodelnfo()[[targetNode]]SisDiscrete()
7
run = function() {
u <- getLogProb(model, calcNodes) - rexp(1, 1)
X0 <- model[[targetNode]
L <- x0 - runif(1, 0, 1) * width
R <- L + width
maxStepsL <- floor(runif(1, 0, 1) * maxSteps)
maxStepsR <- maxSteps - 1 — maxStepsL
lp <- setAndCalculateTarget(L)
while(maxStepsL > 0 & lis.nan(lp) & Ip >=u) {
L <- L - width
lp <- setAndCalculateTarget(L)
maxStepsL <- maxStepsL - 1

| .

