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Outline

• explosion of spatial data in health research

• examples of spatial health data

• modelling spatial risk in a case-control study

– focus on computational efficiency

• methodological and research challenges
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Increased attention to spatial analysis in public health

• areal data:

– public databases and geocoding of individuals to areas
– interest in health disparities and social science questions
– focus is on covariates, not spatial structure

• point data

– geocoding and GPS are mainstream
∗ health outcomes can be assigned point locations

– GIS software
∗ easy data management and manipulation
∗ graphical presentation
∗ spatially-varying covariate generation

– strong applied interest in kriging and related smoothing methods
– opportunities for more sophisticated spatio-temporal modelling,

particularly Bayesian models
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– environmental exposure modelling
∗ spatial smoothing and additive modelling of monitoring data

• mixed point and area data

– individual locations plus area-level covariates

• multivariate responses

– multiple pollutants, multiple health endpoints
– latent variable modelling, causal relationships
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Socioeconomic factors in health outcomes in NSW,
Australia
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• challenges

– areal (postcode) units vary drastically in size
– computational challenge
∗ 650 units, 5 years daily data, 2 sexes, 9 age groups

– spatial effect and spatially-varying covariates hard to tease apart
– data misalignment
∗ outcome at postcode, covariate at census analogue

• relate areal data to a latent smooth process (Kelsall & Wakefield,
Rathouz)
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Combining area and individual-level information

• area-level covariates based on point pro-
cess data

– access to contraception at health clinics
in Malawi

– accessibility of liquor retail outlets in
Chicago

• spatial scale of interest is based on out-
come

• consider two-stage Bayesian model so
smoothing is informed by the health out-
come
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Spatial variation in allergenic response

• geocoding of new mothers’ residences

• measurement of blood serum IgE immune response

• interest in variance partitioning
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Exposure estimation in the Nurses’ Health Study

• spatial estimation of individual environmental exposures

– often air pollution

• particulate matter (PM) exposure in large cohort of nurses

– estimate individual exposure, 1985-2003
– EPA monitoring for large-scale spatio-temporal heterogeneity
– spatially-varying covariates for local heterogenity
∗ distance to roads, climate variables, local land use, ...
∗ generated using GIS

– geocoding of individual residences every two years
∗ relate estimated exposure to health outcomes (chronic heart

disease)
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• geocoding and GIS make this possible; spatial statistics provides a
rigorous framework
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• geocoding and GIS make this possible; spatial statistics provides a
rigorous framework for estimation
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Challenges for spatio-temporal exposure estimation

• computations: 50,000 monthly pollution measurements over 20
years at 500 monitoring sites

– kriging is difficult, particularly Bayesian implementations
– efficient, user-friendly computation is critical (gam() in R)
– more complicated spatio-temporal structures for better predic-

tion, but ...
∗ Bayesian implementation would require a statistician
∗ more computationally efficient methods needed

• non-standard measurement error results from smoothing

• multivariate, non-Gaussian modelling

– modelling PM2.5 based on PM10 and on airport visibilility
– simple multivariate normality not reasonable
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Latent variable modelling

• exposure estimation for PM in the Boston area

• which pollutant sources are responsible for health outcomes?

– traffic is locally heterogeneous, power plant pollutants (e.g., sul-
fates) are not

• estimate latent traffic exposure and relate to health outcomes

• two surrogates for traffic, elemental carbon and black carbon

• hierarchical Bayesian model with multiple data sources
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Petrochemical exposure in Kaohsiung, Taiwan
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n = 495 n = 433

n1 = 141 n1 = 121
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Possible approaches for health analysis

• Explicitly estimate pollutant exposure - difficult retrospectively

• Use distance to exposure source as covariate

• Use a moving window/multiple testing to detect clusters of cases

– default approach - software available

• Include space as a covariate to provide a map of risk

Yi ∼ Ber(p(xi, si))

logit(p(xi, si)) = xi
Tβ + gθ(si)
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Modelling challenges from a Bayesian perspective

• thousands of case-control observations - difficult for Bayesian krig-
ing

• non-Gaussian spatial models particularly difficult

– spatial process cannot be analytically integrated out of the likeli-
hood/posterior

– MCMC mixing is very slow because of high-level structure
∗ correlation amongst process values and between process val-

ues and process hyperparameters
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Modelling Framework

Yi ∼ Ber(p(xi, si))

logit(p(xi, si)) = xi
Tβ + gθ(si)

• basic spatial model for gs
θ = (gθ(s1), . . . , gθ(sn))

– GAM: gθ(·) is a two-dimensional smooth term
∗ basis representation

gs
θ = Zu

∗ Gaussian process representation:

g(·) ∼ GP(µ(·), Cθ(·, ·)) ⇒ gs
θ ∼ N(µ, Cθ)

– GLMM: gs
θ = Zu

∗ correlated random effects, u ∼ N(0,Σ)

17



Bayesian spectral basis function model

• computationally efficient basis function construction (Wikle 2002)

• g# = Zu and gs = σPg#

– piecewise constant gridded surface on k by k grid
– P maps observation locations to nearest grid point

• Z is the Fourier (spectral) basis and Zu is the inverse FFT

• Zu is approximately a Gaussian process (GP) when...

– u ∼ N(0, diag(πθ(ω))) for Fourier frequencies, ω
– spectral density, πθ(·), of GP covariance function defines V(u)
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Bayesian spectral basis functions

ω2 = 0 ω2 = 1 ω2 = 2 ω2 = 3

ω1 = 0

ω1 = 1

ω1 = 2

ω1 = 3
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Comparison with usual GP specification

• usual GP model: gs ∼ N(µ, Cθ)

– O(n3) fitting: |Cθ| and C−1
θ g

• spectral basis uses FFT

– O
(
(k2) log(k2)

)
– additional observations are essentially free for fixed grid
– fast computation and prediction of surface given coefficients
– a priori independent coefficients give fast computation of prior

and help with mixing
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Other approaches

• penalized likelihood based on mixed model (radial basis functions)
with REML smoothing
(Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]

• penalized likelihood with GCV smoothing
(Wood, 2001, 2003, 2004) [PL-GCV]

• Bayesian mixed model/radial basis functions fit by MCMC
(Zhao and Wand 2004) [B-Geo]

• Bayesian neural network model fit by MCMC
(R. Neal) [B-NN]
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Simulated datasets

• 3 case-control scenarios: n0 = 1, 000; n1 = 200; ntest = 2500 on 50 by 50 grid

• 1 cohort scenario: n = 10, 000; ntest = 2500 on 50 by 50 grid
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Assessment on 50 simulated datasets
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Mixing and speed of Bayesian methods
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Taiwan revisited - assessment

Summed test deviance
over 10-fold C-V sets

leukemia brain cancer

PL-GCV 590.1 529.8

PL-PQL 585.6 529.5

B-Geo 583.3 525.7

B-SB 582.1 525.1

null 581.6 525.5
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Assessment on count simulations

n = 225, ntest = 2500 on 50 by 50 grid
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Evaluation of methods

• Effective process parameterization = effective Bayesian estimation

– feasible for spatial models with thousands of observations

• Natural Bayesian complexity penalty works well

– GP representation zeroes out high-frequency coefficients as ap-
propriate

• Implementation requires MCMC, not very accessible to practi-
cioners

• Power is a real issue with spatial data in general, but particularly
with binary observations

• Focused cluster-hunting or distance-based assessment of health
risk may provide more power, but without full spatial assessment
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Methodology challenges in spatial statistics related
to public health

• design and power

– how do we choose monitoring sites?
– when we have enough power to estimate spatial features?
– how do we model spatial processes when monitoring data is at lower resolu-

tion than the true surface?

• surveillance and hotspot detection

– do Bayesian methods have a place in biosurveillance and cluster detection?
∗ current applied work focuses on testing not modelling

– surveillance likely to benefit from a decision theoretic approach that carefully
considers both false positives and false negatives

• assigning one location to an individual is problematic

• variance partitioning between spatial terms and spatially-varying covariates

• confidentiality restrictions with respect to point locations and individual privacy
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General challenges for spatial statistics in public
health research

• computational: big datasets and fitting of complicated models

• collaborative: developing expertise among applied researchers

• leadership

– statisticians should be at the forefront of analyzing geographically-
indexed health data

– we shouldn’t leave this area to GIS analysts/geographers
– necessity of providing and publicizing software for rigorous sta-

tistical methods
∗ e.g., success of mixed model software – PROC MIXED, lme()
∗ evidence of mgcv: public health researchers will learn R if use-

ful model-building tools exist
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• reproducibility: difficult to replicate analyses with complicated mod-
els, particularly MCMC implementations

– posting code and releasing software with papers
– standardized MCMC in R
∗ many models, particularly new methods, can’t be implemented

in BUGS
· e.g., complicated spatio-temporal models

∗ library of MCMC sampling functions with random variable
classes
· Jouni Kerman (Columbia) has an initial implementation for

Gibbs and Metropolis sampling (umacs)
· contributed sampling functions (e.g., slice sampling, Langevin

sampling) would make this very powerful
∗ reduce bugs, increase portability and reproducibility, optimize

mixing
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