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• Statistical	methods	for	event	attribution
• Sources	of	uncertainty
• Risk	ratio	estimation	methods
• Methods	for	quantifying	uncertainty
• Recommendations

• Illustration	with	Texas	heatwave	of	2011
• Sensitivity	analysis	with	respect	to	event	definition
• Use	of	climextremes package	for	risk	ratio	estimation

• climextremes package
• Illustration	on	station	precipitation	data
• Features/capabilities



Sources	of	uncertainty	in	model-based	event	attribution
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• Sampling	uncertainty
• Due	to	variability	in	the	earth	system
• Amenable	to	frequentist	or	Bayesian	statistical	treatment
• Uncertainty	decreases	with	larger	ensembles

• Non-sampling	uncertainty
• Sources:

• Boundary	condition	uncertainty
• Model	parametric	uncertainty
• Model	structural	uncertainty

• Not	amenable	to	frequentist	treatment
• Does	not	decrease	with	larger	ensembles
• Possibly	characterized	based	on	sensitivity	analysis	or	drawing	
from	prior	distribution	over	boundary	conditions,	parameter	
values,	models,	etc.



Methods	to	estimate	probabilities	for	risk	ratio	(RR)
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• Fit	a	parametric	statistical	model	to	climate	variable	values
• E.g.,	lognormal	or	gamma	distribution
• Estimate	probability	of	exceeding	the	threshold	from	fitted	distribution
• Strong	assumption	about	appropriateness	of	model	(all	data	used)

• Count	exceedances	of	threshold	(binomial	sample)	amongst	climate	variable	values
• “Nonparametric”	– no	distributional	assumption
• More	involved	to	account	for	dependence	(e.g.,	daily	data)
• High	uncertainty	when	there	are	very	few	events,	but	can	be	effective	for	RR	

• Fit	extreme	value	distribution	(e.g.,	GEV	or	peaks-over-threshold	(POT)
• Theoretically	justified	when	threshold	is	far	in	tail
• Informed	only	by	extreme	values
• Hard	to	use	with	seasonal	events	because	of	small	sample	sizes
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Methods	to	estimate	uncertainty	in	RR
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• Methods	for	extreme	value	methods	and	binomial	counting
• Asymptotic	statistical	calculations	(delta	method	/	propagation	of	error)

• Assumption	of	normality
• Bootstrap	

• Standard	statistical	bootstrap	gives	a	confidence	interval,	not	a	
Bayesian	probability	interval

• Estimation	of	RR	in	bootstrap	samples	often	fails	(lack	of	EVA	
convergence,	zeros	in	binomial	counting	approach)

• Likelihood	ratio-based	interval

• Methods	for	binomial	counting	(from	epidemiology/biostatistics)
• Wilson’s	method
• Koopman’s method
• Wang/Shan	method

• All	but	asymptotic	and	bootstrap	can	give	interval	when	RR	estimate	is	0	or	
infinity,	e.g.,	(12.8,	Infinity)



RR	confidence	intervals	(binomial	counting)	simulation	results
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RR	confidence	intervals	(binomial	counting)	simulation	results
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Proportion	of	times	lower	interval	endpoint	includes	true	RR	(95%	is	best)
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RR	confidence	intervals	(binomial	counting)	simulation	results
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Proportion	of	times	upper	interval	endpoint	includes	true	RR	(95%	is	best)
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RR	confidence	intervals	(binomial	counting)	simulation	results
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Average	value	of	lower	endpoint	(higher	is	better)
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Methods	to	estimate	uncertainty	in	RR:	conclusions
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• Bootstrap	methods
• Often	fail	to	provide	an	interval
• Poor	statistical	performance

• Likelihood	ratio	method
• Reasonably	good	statistical	performance,	but	coverage	
sometimes	too	low

• Will	work	with	both	extreme	value	analysis	and	binomial	
counting

• Epidemiology/biostatistical methods
• Work	only	for	binomial	counting
• Koopman and	Wang-Shan	methods	generally	perform	well

• All	methods	except	Wang-Shan	available	in	climextremes
software	package



RR	analysis	example:	Texas	2011	heatwave	/	drought
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• CAM5.1	400-member	ensembles	for	factual	and	counterfactual
• March-August	temperature	and	rainfall	over	Texas
• Estimation	done	using	climextremes software
• Temperature:	2/0	is	RR	count-based	estimate	
• Precipitation:	0/0	is	RR	count-based	estimate
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Texas	2011	temperature	analysis
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Event Number	
exceedances

RR	
esti-
mate

EVA	lik
ratio	CI

Binomial	lik
ratio	CI

Binomial	
Koopman CI

2.62	(actual) 2/0 Inf (12.8, Inf) (1.0, Inf) (0.7,	Inf)

2.0 43/0 Inf NA (31,	Inf) (16,	Inf)

1.5 129/3 43 NA (19,	133) (17,	108)

1.03	(20-year	event) 245/11 22 NA (14,	38) (14,	36)

0.73	(10-year	event) 314/40 7.9 NA (6.2,	10.2) (6.1,	10.1)

0.43 (5-year	event) 357/90 4.0 NA (3.4,	4.7) (3.4,	4.6)

Actual	event	is	2.62	degree	anomaly
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Texas	2011	precipitation	analysis
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• Recall	that	actual	event	(40%	of	historical	average	precipitation)	has	no	
events	in	factual	or	counterfactual	ensembles

• Extreme	value	analysis	(EVA)	gives	(0.01,	Inf)	as	interval
• EVA	not	really	appropriate	for	less	extreme	events	but	shown	anyway



climextremes software
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• High-level	goals
• Operate	from	Python	or	R
• Provide	risk	ratio	calculations	and	extreme	value	analysis	
fitting	(GEV	and	POT)

• Handle	common	situations	with	climate	data
• Designed	for	both	observations	and	model	output

• Technical	features
• Use	of	covariates	for	any	extreme	value	distribution	parameter	
(nonstationary	fitting)

• Estimation	with	uncertainty	for	risk	ratios,	return	values,	return	
periods,	differences	in	return	values

• Various	techniques	for	estimating	uncertainty
• Statistically	rigorous	estimation	with	model	ensembles
• Statistically	rigorous	treatment	of	missing	values	(for	POT)
• Allows	weighting	(e.g.,	weighting	nearby	stations)



climextremes example
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• US	GHCN	Santa	Cruz	precipitation
• 1950-2016
• November-May	rainy	season
• 270	missing	days
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climextremes example
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Stationary	peaks-over-threshold	fit

result	=	climextremes.fit_pot(numpy.array(exc.y),	nBlocks =	nyears,	threshold	=	threshold,	
firstBlock =	missing.seasonyear[0],	blockIndex =	numpy.array(exc.seasonyear),	index	=	
numpy.array(exc.day),	proportionMissing =	numpy.array(missing.propMiss),	declustering
=	'noruns',	returnPeriod =	20,	returnValue =	100,	bootSE =	False)

Nonstationary	peaks-over-threshold	fit	
#	linear	location	trend	in	time	-
#	contrast	2015	returnValue and	return	probability	with	that	for	1950

resultNS =	climextremes.fit_pot(numpy.array(exc.y),	x	=	numpy.array(missing.seasonyear),	
locationFun =	1,	nBlocks =	nyears,	threshold	=	threshold,	firstBlock =	
missing.seasonyear[0],	blockIndex =	numpy.array(exc.seasonyear),	index	=	
numpy.array(exc.day),	proportionMissing =	numpy.array(missing.propMiss),	declustering
=	'noruns',	xNew =	2015,	xContrast =	1950,	returnPeriod =	20,	returnValue =	100,	bootSE
=	False)



climextremes example
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Stationary	peaks-over-threshold	fit
#	20-year	return	value	and	standard	error
result['returnValue']
#	120.3	mm
result['se_returnValue']							#	return	value	standard	error	(asymptotic)
#			7.9	mm
result['logReturnProb']								#	log	of	probability	of	exceeding	'returnValue=100’
#	-1.98
#	confidence	interval	on	return	probability	for	100	mm	event
np.exp(result['logReturnProb']	+	np.array((-2,	2))*result['se_logReturnProb'])
#	(0.0872262,	0.2200104)

Nonstationary	fit	with	location	linear	in	year
#	change	in	return	value	(2015	- 1950)	and	standard	error	of	the	change
resultNS['returnValueDiff']
#	-2.68	 mm	
resultNS['se_returnValueDiff']
#		5.37	mm
#	risk	ratio	2015	/	1950	for	100	mm	event	with	confidence	interval
np.exp(resultNS['logReturnProbDiff'])
#		0.88
np.exp(resultNS['logReturnProbDiff']	+	np.array((-2,	2))*resultNS['se_logReturnProbDiff'])
#	(0.51,	1.49)



References	/	Links
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• Statistical	methods:	
• Paciorek C.J.,	D.A.	Stone,	and	M.F.	Wehner.	2018.	Quantifying	statistical	uncertainty	

in	the	attribution	of	human	influence	on	severe	weather.	Weather	and	Climate	
Extremes,	accepted.

• https://arxiv.org/abs/1706.03388

• climextremes software	(version	0.2.0):
• Available	via	conda for	python
• Available	via	CRAN	for	R
• Repository: https://bitbucket.org/lbl-cascade/climextremes-dev


