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OUTLINE

Gaussian processes and nonstationary covariance
Generalized nonstationary covariance via convolution
Application to nonstationary kriging

A Bayesian model for nonstationary spatial processes
Comparison with stationary modelling and free-knot splines

Representations of stationary GPs for fast computation
[1 Matérn-based basis functions

[1 Fourier basis functions

Efficient MCMC for generalized spatial models



GAUSSIAN PROCESS DISTRIBUTION

e Infinite-dimensional joint distribution for f(x), = € X:

0 Example: f(-) a spatial process, X = R? -
/s .
0 f() ~GP(u(-),C(+,-)) // X AN
/ \
e Finite-dimensional marginals are normal I/ . \

e Types of covariance functions, C(x;, x;):
[1 stationary, isotropic
[1 stationary, anisotropic

[1 nonstationary \
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STATIONARY CORRELATION FUNCTIONS
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e Differentiability controlled by v, asymptotic advantages (Stein)
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DEGREE OF SMOOTHING
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A NONSTATIONARY COVARIANCE

Higdon, Swall, and Kern (1999) (HSK)
RN3(x;,x5) = ¢ij [up ka; (U)ka, (u)du
Guaranteed positive definite

Gaussian kernels:
ke, (u) o< exp (—(u — )T (u — azz))
RN®(zi,x;) = cijexp (—(mi — ;)" (%) (z; — wj))

f(-) ~ GP(p, 0'2RNS('7 )
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NONSTATIONARY GPSIN 2D

Kernel Structure
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GENERALIZING THE HSK KERNEL METHOD

e Squared exponential form:

exp (— (E)Z) = Cij €Xp (—(wz’ —x;)" (%)_1 (x; — 33.7))

Infi nitely-differentiable sample paths

e ‘Distance measures’

Isotropy T,fj = (x; — wj)T(iUi — x;)
] * 2 —
anisotropy ™5 = (@i —x5) T2z — xy)

>, 4+ 30\ !
nonstationarity  Qi; = (z; — z;)T ( —; J) (zi — ;)

e Can we replace 7-,57. with Q;; In other stationary correlation
functions?
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GENERALIZED NONSTATIONARY COVARIANCE

e Theorem 1: if R(7) is positive definite for RY, P =1, 2,.. ., then

RNS(z;,2;) = 205 R (/Qu)

2

is positive definite for R, P =1, 2,...

e Theorem 2: Smoothness properties of original stationary correlation
retained
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PROOF (SKETCH)

R(t) = [ exp(—12w)h(w)dw (Schoenberg, 1938)
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n
=1 j=1

— /OOO/%P (izn;aikzw(u)>2

e Covariance must depend only on location-specific kernels

iaiajC(azi,xj) = iia@'aj /OO/ k’z’,w(u)k',
— . P
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NONSTATIONARY MATERN COVARIANCE

stationary form nonstationary form

e (555) () s (050 K (2700

'(v)2v—1 K '(v)2v—1

Advantages: more flexible form, differentiability not constrained,
possible asymptotic advantages
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NONSTATIONARY KRIGING

basic kriging model: Y ~ N(u, (6?R¢(k,v) + n?I))

\/Q:; is an anisotropic distance if ; = X;

To krige, estimate parameters of 3.y locally and proceed as usual
Possibilities

[1 knit together region-specific covariance structures

[1 estimate local covariance parameters based on a moving window

[1 any approach that creates location-specific kernels produces a
legitimate covariance structure
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NONSTATIONARY KRIGING EXAMPLE

e precipitation anomalies in Colorado, August 1963

e fit covariance structure by maximizing marginal likelihood (EB):

n o K
whole state | 3.75 | 7.10 | 5.49
eastern CO | 3.63 | 9.50 | 7.92
western CO | 3.46 | 3.23 | 0.69

e could also use standard variogram fitting
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A BASIC BAYESIAN SPATIAL MODEL

e Bayesian model
Y, ~ N(f(z:),n?), z; € R
f(-) ~ GP(u,d?RN3(, 51,5 (,)))
0 Let RY* be the nonstationary Matérn correlation

[1 Kernels (X,) constructed based on stationary GP priors
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SMOOTHLY-VARYING KERNEL MATRICES

e Goals:

[1 Define multiple kernel matrices, ., € € X

[1 Smoothly-varying (element-wise) in covariate space
[1 Positive definite

e Approaches:
[0 Parameterize ellipse foci and size (X = R?) (HSK)
[J mixing issues and non-generalizability to higher dimensions
[0 Cholesky decomposition (X = RY): ¥, = L,LL
[1 hard to simultaneously control direction and size
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SMOOTHLY-VARYING KERNEL MATRICES (2)

e Spectral decomposition (RY): £, = T'TA,T,)

[

in RY, T',, parameterized as first eigenvector plus successive
orthogonal vectors in reduced-dimension subspaces

in 2, stationary GP priors on unnormalized eigenvector
coordinates (a., b,.) and on logarithm of eigenvalues
(Az,15 Az,2)

efficient parameterizations of stationary GPs for

®(-) € {a(-),b(-), A1 (+), A2(+)} [more later]
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EMPIRICAL ASSESSMENT

e Compare performance to:

[1 stationary GP spatial model

[J Bayesian models in which f(-) is a spline

[1 BMARS (Denison, Mallick & Smith 1998) - tensor products
of univariate splines

[1 BMLS (Holmes & Mallick 2001) - multivariate linear splines
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RESULTS - SIMULATED NONSTATIONARY FUNCTION
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RESULTS - SIMULATED NONSTATIONARY FUNCTION (2)
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RESULTS - COLORADO PRECIPITATION
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RESULTS - COLORADO PRECIPITATION (2)
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ONGOING ASSESSMENT

e Compare performance on several datasets to:

[1 stationary spatial models
[1 kriging
[1 thin-plate spline model
[1 mixed model representation of spatial surface
[1 stationary GP model

[1 Bayesian nonstationary models

[ BMARS (Denison, Mallick & Smith 1998) - tensor products

of univariate splines

[1 BMLS (Holmes & Mallick 2001) - multivariate linear splines

[1 neural network model (R. Neal software)
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REPRESENTATIONS OF STATIONARY PROCESSES

e Applications
[1 Eigenprocesses in the nonstationary model
[1 Function representation in generalized spatial modelling
Y; ~ D(g~ ' ((XB); + ®(z4)))
e Goals
[ Efficient computation

[1 Close approximation to the covariance structure of a stationary
GP
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MATERN BASIS FUNCTIONS (ZHAO, KAMMANN, WAND)

e b =p+o0Z0 zu
0 Z = (C(|| i — ke ) s1<i<n,1<k<k

0 Q= (C(l k5 — ke |l) n<i<kxi<k<k

[0 C(-) astationary covariance function
e Mmatrix operations based on K knots, so more efficient

e motivation: if {kr} = {x;}, Cov(®(:)) = C(-)
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FOURIER BASIS FUNCTIONS (WIKLE)

P, = p+ U'A(I)grid
® ., = Wu (discretized process)

u elements are independent, complex-valued RVs

[ variance based on spectral density of stationary C'(+)
W is the inverse FFT (W are Fourier basis vectors)

propose blocks of values of w with focus on low-frequency
coefficients
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APPLICATION TO THE NONSTATIONARY MODEL

e Represent each eigenprocess as a stationary GP

e Fix some hyperparameters
[1 Fix k and let o do the smoothing

[1 Fix o and let x do the smoothing

e When sample hyperparameters, sample eigenprocess as well:
0 & =u+ oB(k,v)u
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APPLICATION TO PuBLIC HEALTH DATA

e Features of spatial disease modelling
[1 case-control binary outcomes common
[I relatively large sample sizes (100s to 1000s)
[J models must include individual-level covariates
0 Y; ~ Ber(logit ' ((X3); + ®(x;))))
[ stationary models for ®(-)
e FFT approach is particularly efficient

[1 for fixed grid, likelihood scales as O(n)

e Work in progress to compare FFT and mixed model/Matérn basis to

frequentist estimation:
[1 mixed model approximation (penalized quasi-likelihood)

[1 efficient thin-plate splines (Simon Wood, R mgcyv library)
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CONCLUSIONS & COMMENTS

Generalized HSK nonstationary covariance provides a family of
nonstationary covariances

Accounting for nonstationarity can improve fit

Limitations: sharp changes in function, boundaries and other
complicated structure not well captured

Computational speed and mixing remain issues

Nonstationary GPs can be used in general nonparametric regression
setting
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