Nonstationary Covariance Functions for Spatial Modelling

Chris Paciorek

paciorek@hsph.harvard.edu

January 16, 2004

OUTLINE

- Gaussian processes and nonstationary covariance
- Generalized nonstationary covariance via convolution
- Application to nonstationary kriging
- A Bayesian model for nonstationary spatial processes
- Comparison with stationary modelling and free-knot splines
- Representations of stationary GPs for fast computation
 - Matérn-based basis functions
 - **❖** Fourier basis functions
- Efficient MCMC for generalized spatial models

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - lacktriangle Example: $f(\cdot)$ a spatial process, $\mathcal{X}=\Re^2$
 - \bullet $f(\cdot) \sim GP(\mu(\cdot), C(\cdot, \cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - stationary, isotropic
 - stationary, anisotropic
 - nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - lacktriangle Example: $f(\cdot)$ a spatial process, $\mathcal{X}=\Re^2$
 - $f(\cdot) \sim \text{GP}(\mu(\cdot), C(\cdot, \cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - stationary, isotropic
 - stationary, anisotropic
 - nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - lacktriangle Example: $f(\cdot)$ a spatial process, $\mathcal{X}=\Re^2$
 - \bullet $f(\cdot) \sim GP(\mu(\cdot), C(\cdot, \cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - stationary, isotropic
 - stationary, anisotropic
 - nonstationary

STATIONARY CORRELATION FUNCTIONS

• Differentiability controlled by ν , asymptotic advantages (Stein)

DEGREE OF SMOOTHING

A Nonstationary Covariance

• Higdon, Swall, and Kern (1999) (HSK)

$$R^{NS}(x_i,x_j) = c_{ij} \int_{\Re^P} k_{x_i}(u) k_{x_j}(u) du$$

- Guaranteed positive definite
- Gaussian kernels:

$$k_{x_i}(u) \propto \exp\left(-(u-x_i)^T \Sigma_i^{-1} (u-x_i)\right)$$
 $R^{NS}(x_i,x_j) = c_{ij} \exp\left(-(x_i-x_j)^T \left(\frac{\Sigma_i+\Sigma_j}{2}\right)^{-1} (x_i-x_j)\right)$

• $f(\cdot) \sim GP(\mu, \sigma^2 R^{NS}(\cdot, \cdot))$

Nonstationary GPs in 1D

Nonstationary GPs in 2D

GENERALIZING THE HSK KERNEL METHOD

• Squared exponential form:

$$\exp\left(-\left(\frac{ au}{\kappa}\right)^2\right) \Rightarrow c_{ij} \exp\left(-(x_i-x_j)^T\left(\frac{\Sigma_i+\Sigma_j}{2}\right)^{-1}(x_i-x_j)\right)$$

Infi nitely-differentiable sample paths

• 'Distance measures'

isotropy
$$au_{ij}^2 = (x_i-x_j)^T(x_i-x_j)$$
 anisotropy $au_{ij}^{*2} = (x_i-x_j)^T\Sigma^{-1}(x_i-x_j)$ nonstationarity $Q_{ij} = (x_i-x_j)^T\left(rac{\Sigma_i+\Sigma_j}{2}
ight)^{-1}(x_i-x_j)$

• Can we replace au_{ij}^2 with Q_{ij} in other stationary correlation functions?

GENERALIZED NONSTATIONARY COVARIANCE

ullet Theorem 1: if R(au) is positive definite for $\Re^P, P=1,2,\ldots$, then

$$R^{NS}(x_i,x_j) = rac{|\Sigma_i|^{rac{1}{4}}|\Sigma_j|^{rac{1}{4}}}{\left|rac{\Sigma_i+\Sigma_j}{2}
ight|^{rac{1}{2}}} R\left(\sqrt{Q_{ij}}
ight)$$

is positive definite for \Re^P , $P=1,2,\ldots$

• Theorem 2: Smoothness properties of original stationary correlation retained

PROOF (SKETCH)

•

$$R(\tau) = \int_0^\infty \exp(-\tau^2 w) h(w) dw$$
 (Schoenberg, 1938)

$$R^{NS}(x_{i}, x_{j}) = \frac{2^{\frac{P}{2}} |\Sigma_{i}|^{\frac{1}{4}} |\Sigma_{j}|^{\frac{1}{4}}}{|\Sigma_{i} + \Sigma_{j}|^{\frac{1}{2}}} \int_{0}^{\infty} \exp(-Q_{i,j}w)h(w)dw$$

$$= \frac{2^{\frac{P}{2}} |\Sigma_{i}|^{\frac{1}{4}} |\Sigma_{j}|^{\frac{1}{4}}}{|\Sigma_{i} + \Sigma_{j}|^{\frac{1}{2}}} \cdot \int_{0}^{\infty} \exp\left(-\frac{1}{2}(x_{i} - x_{j})^{T} \left(\frac{\Sigma_{i} + \Sigma_{j}}{2w}\right)^{-1} (x_{i} - x_{j})\right) h(w)dw$$

$$= \int_{0}^{\infty} \int_{\Re^{P}} k_{i,w}(u)k_{j,w}(u)duh(w)dw$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} C(x_{i}, x_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \int_{0}^{\infty} \int_{\mathbb{R}^{P}} k_{i,w}(u) k_{j,w}(u) du h(w) dw$$

$$= \int_{0}^{\infty} \int_{\mathbb{R}^{P}} \sum_{i=1}^{n} a_{i} k_{i,w}(u) \sum_{j=1}^{n} a_{j} k_{j,w}(u) du h(w) dw$$

$$= \int_{0}^{\infty} \int_{\mathbb{R}^{P}} \left(\sum_{i=1}^{n} a_{i} k_{i,w}(u) \right)^{2} du h(w) dw \ge 0.$$

• Covariance must depend only on location-specific kernels

Nonstationary Matérn Covariance

stationary form

nonstationary form

$$\tfrac{1}{\Gamma(\nu)2^{\nu-1}} \left(\tfrac{2\sqrt{\nu}\tau}{\kappa} \right)^{\nu} K_{\nu} \left(\tfrac{2\sqrt{\nu}\tau}{\kappa} \right) \Rightarrow \tfrac{1}{\Gamma(\nu)2^{\nu-1}} \left(2\sqrt{\nu Q_{ij}} \right)^{\nu} K_{\nu} \left(2\sqrt{\nu Q_{ij}} \right)$$

Advantages: more flexible form, differentiability not constrained, possible asymptotic advantages

Nonstationary kriging

- ullet basic kriging model: $Y \sim \mathrm{N}(\mu, (\sigma^2 R_f(\kappa,
 u) + \eta^2 I))$
- ullet $\sqrt{Q_{ij}}$ is an anisotropic distance if $\Sigma_i = \Sigma_j$
- \bullet To krige, estimate parameters of $\Sigma_{(\cdot)}$ locally and proceed as usual
- Possibilities
 - * knit together region-specific covariance structures
 - * estimate local covariance parameters based on a moving window
 - any approach that creates location-specific kernels produces a legitimate covariance structure

NONSTATIONARY KRIGING EXAMPLE

- precipitation anomalies in Colorado, August 1963
- fit covariance structure by maximizing marginal likelihood (EB):

	η	σ	κ
whole state	3.75	7.10	5.49
eastern CO	3.63	9.50	7.92
western CO	3.46	3.23	0.69

• could also use standard variogram fitting

COLORADO PRECIPITATION ANOMALIES

COLORADO PRECIPITATION ANOMALIES

COLORADO PRECIPITATION ANOMALIES

A BASIC BAYESIAN SPATIAL MODEL

• Bayesian model

$$egin{array}{lll} Y_i & \sim & N(f(x_i), \eta^2), \ x_i \in \Re^2 \ & \ f(\cdot) & \sim & \mathrm{GP}(\mu, \sigma^2 R^{NS}(\cdot, \cdot;
u, \Sigma_{(\cdot)})) \end{array}$$

- lacktriangle Let R^{NS} be the nonstationary Matérn correlation
- lacktriangle Kernels (Σ_x) constructed based on stationary GP priors

SMOOTHLY-VARYING KERNEL MATRICES

• Goals:

- lacktriangle Define multiple kernel matrices, Σ_x , $x \in \mathcal{X}$
- ❖ Smoothly-varying (element-wise) in covariate space
- Positive definite

• Approaches:

- Parameterize ellipse foci and size $(\mathcal{X} = \Re^2)$ (HSK)
 - mixing issues and non-generalizability to higher dimensions
- lacktriangledown Cholesky decomposition ($m{\mathcal{X}}=\Re^{m{P}}$): $m{\Sigma}_{m{x}}=m{L}_{m{x}}m{L}_{m{x}}^T$
 - ♦ hard to simultaneously control direction and size

SMOOTHLY-VARYING KERNEL MATRICES (2)

- ullet Spectral decomposition (\Re^P): $\Sigma_x = \Gamma_x^T \Lambda_x \Gamma_x$)
 - ightharpoonup in eal^P , eal^D parameterized as first eigenvector plus successive orthogonal vectors in reduced-dimension subspaces
 - \clubsuit in \Re^2 , stationary GP priors on unnormalized eigenvector coordinates (a_x, b_x) and on logarithm of eigenvalues $(\lambda_{x,1}, \lambda_{x,2})$
 - lacktriangledown efficient parameterizations of stationary GPs for $\Phi(\cdot) \in \{a(\cdot), b(\cdot), \lambda_1(\cdot), \lambda_2(\cdot)\}$ [more later]

 $a_x b_x$

EMPIRICAL ASSESSMENT

- Compare performance to:
 - stationary GP spatial model
 - lacktriangle Bayesian models in which $f(\cdot)$ is a spline
 - ♦ BMARS (Denison, Mallick & Smith 1998) tensor products of univariate splines
 - ♦ BMLS (Holmes & Mallick 2001) multivariate linear splines

RESULTS - SIMULATED NONSTATIONARY FUNCTION

RESULTS - SIMULATED NONSTATIONARY FUNCTION (2)

RESULTS - COLORADO PRECIPITATION

RESULTS - COLORADO PRECIPITATION (2)

ONGOING ASSESSMENT

- Compare performance on several datasets to:
 - stationary spatial models
 - kriging
 - thin-plate spline model
 - mixed model representation of spatial surface
 - stationary GP model
 - **❖** Bayesian nonstationary models
 - ♦ BMARS (Denison, Mallick & Smith 1998) tensor products of univariate splines
 - ♦ BMLS (Holmes & Mallick 2001) multivariate linear splines
 - neural network model (R. Neal software)

REPRESENTATIONS OF STATIONARY PROCESSES

- Applications
 - ❖ Eigenprocesses in the nonstationary model
 - Function representation in generalized spatial modelling $Y_i \sim D(g^{-1}((X\beta)_i + \Phi(x_i)))$
- Goals
 - Efficient computation
 - Close approximation to the covariance structure of a stationaryGP

MATÉRN BASIS FUNCTIONS (ZHAO, KAMMANN, WAND)

•
$$\Phi = \mu + \sigma Z \Omega^{-\frac{1}{2}} u$$

• $Z = (C(\parallel x_i - \kappa_k \parallel)), 1 \le i \le n, 1 \le k \le K$
• $\Omega = (C(\parallel \kappa_j - \kappa_k \parallel)), 1 \le j \le K, 1 \le k \le K$
• $C(\cdot)$ a stationary covariance function

- ullet matrix operations based on $oldsymbol{K}$ knots, so more efficient
- ullet motivation: if $\{\kappa_k\} = \{x_i\}$, $\operatorname{Cov}(\Phi(\cdot)) = C(\cdot)$

FOURIER BASIS FUNCTIONS (WIKLE)

- ullet $\Phi_{ ext{dat}} = \mu + \sigma A \Phi_{ ext{grid}}$
- ullet $\Phi_{ ext{grid}} = \Psi u$ (discretized process)
- u elements are independent, complex-valued RVs
 - \diamond variance based on spectral density of stationary $C(\cdot)$
- Ψu is the inverse FFT (Ψ are Fourier basis vectors)
- ullet propose blocks of values of $oldsymbol{u}$ with focus on low-frequency coefficients

APPLICATION TO THE NONSTATIONARY MODEL

- Represent each eigenprocess as a stationary GP
- Fix some hyperparameters
 - \clubsuit Fix κ and let σ do the smoothing
 - \bullet Fix σ and let κ do the smoothing
- When sample hyperparameters, sample eigenprocess as well:

$$\Phi = \mu + \sigma B(\kappa, \nu) u$$

APPLICATION TO PUBLIC HEALTH DATA

- Features of spatial disease modelling
 - case-control binary outcomes common
 - relatively large sample sizes (100s to 1000s)
 - * models must include individual-level covariates
 - $Y_i \sim \text{Ber}(\text{logit}^{-1}((X\beta)_i + \Phi(x_i)))$
 - \diamond stationary models for $\Phi(\cdot)$
- FFT approach is particularly efficient
 - \diamond for fixed grid, likelihood scales as O(n)
- Work in progress to compare FFT and mixed model/Matérn basis to frequentist estimation:
 - mixed model approximation (penalized quasi-likelihood)
 - efficient thin-plate splines (Simon Wood, R mgcv library)

CONCLUSIONS & COMMENTS

- Generalized HSK nonstationary covariance provides a family of nonstationary covariances
- Accounting for nonstationarity can improve fit
- Limitations: sharp changes in function, boundaries and other complicated structure not well captured
- Computational speed and mixing remain issues
- Nonstationary GPs can be used in general nonparametric regression setting