DOES REMOTELY-SENSED AEROSOL HELP PREDICT GROUND-LEVEL PM_{2.5} CONCENTRATIONS IN THE EASTERN U.S.? Christopher J. Paciorek¹ and Yang Liu²

INTRODUCTION

- Remote sensing observations of aerosol hold promise for adding information about PM_{2.5} concentrations beyond that from monitors, particularly in suburban and rural areas with limited monitoring.
- AOD (aerosol optical depth) observations are frequently missing, and noisy and biased relative to $PM_{2.5}$.
- Bayesian statistical modeling holds promise for integrating AOD, PM_{2.5}, and GIS and weather information to predict monthly $PM_{2.5}$ concentrations on a fine grid (4 km).
- Here we assess the potential of AOD to improve predictions of PM_{2.5} concentrations.
- This work is part of a larger project seeking to estimate monthly PM_{2.5} concentrations at fine spatial scale as a data product for use in chronic health studies.

KEY QUESTIONS

- 1). Do spatial patterns in AOD reflect true patterns in $PM_{2.5}$? Statistical formulation: Should we model spatiallycorrelated (systematic) bias in AOD as a proxy for $PM_{2.5}$?
- 2.) Does AOD help to improve monthly and longer-term predictions of PM_{2.5}?

• Statistical formulation: Does including AOD in a statistical prediction model improve PM_{2.5} concentrations when other information is included in the model?

- GIS-based covariates
- Meteorological covariates
- Spatial smoothing to estimate large-scale variation

SUMMARY OF RESULTS

1). Systematic, spatially-correlated error in AOD as a proxy for PM_{2.5} suggests that spatial patterns in AOD do not reflect patterns in PM_{2.5}.

• Differences may be due to missing retrievals as well as errors from retrieval algorithm that are spatially-correlated.

2.) Inclusion of AOD in statistical prediction models for $PM_{2.5}$ has little impact on $PM_{2.5}$ predictions.

 Raw correlation between AOD and PM_{2.5} reflects patterns in PM_{2.5} that can be predicted using other sources of information.

ONGOING WORK

- Full cross-validatory assessment of statistical models with and without AOD to quantify effect of AOD on PM_{2.5} prediction.
- Full development of monthly-scale Bayesian statistical models for PM_{2.5} prediction, accounting for spatio-temporal structure.
- Monthly model predictions of PM_{2.5} on a four-km grid over the eastern U.S. for 2000-2006.

DATA SOURCES

Remote Sensing Observations

- MISR AOD: 16 day orbit repeat, observations every 4-7 days at 10:30 am for a given location, 17.6 km nominal resolution
- MODIS AOD: 16 day orbit repeat, observations every 1-2 days at 10:30 am for a given location, 10 km nominal resolution
- GOES AOD: observations every half hour, 4 km nominal resolution
 - Example: MODIS orbits, July 14, 2004

Key Question: Are such spatial patterns reflective of patterns in PM_{2.5}?

RAW ASSOCIATIONS OF AOD AND PM_{2.5} EASTERN U.S.

DAILY ASSOCIATION

Associations of matched (time and space) daily AOD retrievals and PM_{2.5} concentrations

	R	Raw AOD			Calibrated AOD		
	MODIS	MISR	GOES	MODIS	MISR	GOES	
Overall correlation (longitudinal plus cross- sectional)	0.60	0.50	0.38	0.64	0.57	0.40	
Average of daily (cross-sectional) correlations	0.35	0.30	0.23	0.45	0.32	0.29	
Average of daily, April-October only	0.42	0.34	0.30	0.50	0.38	0.40	

CALIBRATION

Involves adjusting AOD for relative humidity, planetary boundary layer, day of year, and regional spatial effects based on regression model of AOD on PM_{2.5} for matched daily data from 2004.

LONG-TERM ASSOCIATION

Associations (cross-sectional) of yearly average PM_{2.5} with average of available AOD retrievals (not matched by day, matched in space)

Overall correlation April-October only

Spatial (cross-sectional) associations of monthly average PM_{2.5} with smoothed average of available AOD retrievals (not matched by day, matched in space)

the winter)

SUMMARY

Moderate correlations are seen when comparing daily AOD and PM_{2.5} matched in time and space, which includes both longitudinal and cross-sectional (spatial) association. Adjustment (calibration) for meteorology and regional spatial variation in the relationship improves correlations. However, when considering only cross-sectional association and comparing long-term average PM_{2.5} concentrations with the average of available AOD retrievals, correlations are not strong. In interpreting the correlations that do exist, one possibility is that these represent large-scale associations such that AOD included in a full statistical model for PM_{2.5} may not help improve PM_{2.5} predictions because large-scale patterns can be estimated solely from spatial smoothing of the available PM_{2.5} data.

This research is supported by HEI 4746-RFA05-2/06-7.

- average, every 1, 3, or 6 days
- American Regional Reanalysis

¹Department of Biostatistics, Harvard School of Public Health, Boston, MA; ²Department of Environmental Health, Harvard School of Public Health, Boston, MA

STATISTICAL MODELLING: MID-ATLANTIC CASE STUDY

PM_{2.5} and Covariate Information

PM_{2.5} measurements from AQS and IMPROVE: daily

• Weather data at 32 km, 3 hour resolution from North

GIS-derived information: distance to roads (and road density) by road class, population density, land use NEI point source and county-level area emissions

MODEL FRAMEWORK: USE AOD AS DATA

• AOD and $PM_{2.5}$ treated as two separate datasets and both related to latent 'true' PM_{2.5}. • Naturally deals with missing AOD – doesn't require imputation.

• Model structure for bias of AOD is critical – must model any systematic error (spatiallycorrelated bias) in AOD as a proxy for $PM_{2.5}$.

Estimated spatial bias (systematic error) of AOD as a proxy for PM_{2.5}

Model predictions are very sensitive to the assumptions about the nature of the bias in AOD as a proxy for $PM_{2.5}$. If no spatial (i.e., no systematic) bias is assumed, spatial patterns in AOD are reflected in $PM_{2.5}$. predictions. If systematic bias is parameterized in the model, the model estimates that the spatial pattern in AOD is distinct from spatial pattern in PM, discounting AOD as a proxy for PM_{2.5}. This suggests caution in interpreting spatial patterns in AOD as patterns in PM_{2.5}.

Question 2: Does AOD improve PM_{2.5} predictions?

MODEL FRAMEWORK: USE AOD AS A PREDICTOR

• AOD treated as a regression predictor. Treats PM observations as gold stand with inherent calibration of AOD to PM₂ Missing AOD needs to be imputed.

PM_{2.5} MODEL PREDICTIONS, JULY 2004

Note: Predictions based on GOES AOD as predictor are similar.

Estimate of beta1 (the AOD regression coefficient) is small. Including AOD as a predictor has little impact on model predictions of PM_{2.5}.

Ra	aw AOI	C	Calibrated AOD			
MODIS	MISR	GOES	MODIS	MISR	GOES	
0.09	0.25	-0.06	0.49	0.22	0.57	
-0.11	0.17	-0.24	0.41	0.13	0.64	

Question 1: Do AOD patterns reflect PM_{2.5} patterns?

MODEI

Likelihoods for monthly average data:

$$\mathsf{PM}_i = y_i \sim \mathcal{N}(\mu + P(s(i)) + \sum_k f_k(z_{k,i}), \sigma_{y,i}^2)$$

$$AOD_m = a_m \sim \mathcal{N}(\beta_0 + \phi(s_m) + \beta_1(\mu + P(s_m)), \sigma^2_{a,m})$$

 $f_k(\cdot), k = 1, \ldots, K_f$ are nonparametric regression functions of within-grid cell covariates.

• $\phi(s)$ is spatially-correlated additive bias.

Latent $PM_{2.5}$ process, P(s), on 4 km grid:

$$P(s_m) = \sum_k h_k(w_k(s_m)) + g(s_m)$$

- $h_k(\cdot), k = 1, \ldots, K_h$ are nonparametric regression functions of grid cell-scale covariates.
- g(s) is Gaussian spatial process.

SUMMARY

Likelihood for monthly average PM_{2.5} :

$$\mathsf{PM}_i = y_i ~\sim~ \mathcal{N}(\mu + \mathsf{P}(s(i)) + \sum_k f_k(z_{k,i}), \sigma_{y,i}^2)$$

Latent
$$PM_{2.5}$$
 process, $P(s)$, on 4 km grid:

$$P(s_m) = \beta_1(s_m)A(s_m) + \sum_k h_k(w_k(s_m)) + g(s_m)$$

Imputation of AOD via spatial smoothing model, using a thin-plate spline-based GMRF model:

$$egin{aligned} & a_m \sim \mathcal{N}(\gamma_0 + \mathcal{A}(s_m), \sigma^2_{a,m}) \ & \mathcal{A}(s) \sim \mathsf{GMRF}(au^2) \end{aligned}$$

where A(s) is smooth AOD process estimated everywhere.

EXAMPLE OF AOD IMPUTATION

Available AOD	Smoothed AOD				
	- 1.2		- 1.2		
	- 1.0		- 1.0		
	- 0.8		- 0.8		
	- 0.6		- 0.6		
	- 0.4		- 0.4		
A JAN JAN	- 0.2	1-2- 52/20	- 0.2		
	- 0.0	2 - V V V R	- 0.0		

SUMMARY

Note: spatial smoothing of AOD done to interpolate areas with no retrievals in a month (this is primarily for MODIS and primarily in