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Increased attention to spatial analysis in public health

e data availability: geocoding and GPS for assigning point locations
to individuals and monitors

e GIS software:

— easy data management and manipulation
— graphical presentation
— spatially-varying covariate generation

e interest amongst researchers:

— strong applied interest in kriging and related smoothing methods
— opportunities for more sophisticated spatio-temporal modelling,
particularly Bayesian hierarchical modelling



Petrochemical exposure in Kaohsiung, Taiwan

northing (km)

2500 2510 2520 2530

2490

leukemia

165 170 175 180 185 190
easting (km)
n = 495

ny = 141

northing (km)

2500 2510 2520 2530

2490

brain cancer

I I I I I I
165 170 175 180 185 190

easting (km)

n =433

ny = 121



Possible approaches for health analysis

Explicitly estimate pollutant exposure - difficult retrospectively
Use distance to exposure source as covariate

Use a moving window/multiple testing to detect clusters of cases

— default approach - software available
Include space as a covariate to provide a map of risk

Hz’ ~ Ber(p(wias’i))
logit(p(x;, s:)) = iBiTﬁJrge(Si)



Particulate matter exposure in the Nurses’ Health
Study

e estimate individual exposure, 1985-2003

— EPA monitoring for large-scale spatio-temporal heterogeneity
— spatially-varying covariates for local heterogenity
+ distance to roads, climate variables, local land use, ...

x generated using GIS
e basic additive exposure model:

logE' ~ N(f(zs,8:),7°)
f(x;, s Zh x;) + go(S3)

e geocoding of individual residences every two years

— relate estimated exposure to health outcomes (chronic heart dis-
ease) )



e geocoding and GIS make this possible; spatial statistics provides a
rigorous framework

Predicted surface of weekly-average nitrogen dioxide
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Health outcomes by postcode in NSW, Australia

SED (SEIFA) by Postcode, NSWY 94/05
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e methodological challenges

— areal (postcode) units vary drastically in size
— data misalignment

e relate areal data to a latent smooth process, go(-) (Kelsall & Wakefield, Rathouz)

e computational challenges: 650 units, 5 years daily data, 2 sexes, 9 age groups



Outline

Motivating examples

Introduction to Gaussian processes (GPs)
Fast Gaussian process modelling

Flexible Gaussian process modelling
Bayes and overfitting

The future: flexibility + efficiency + hierarchical modelling



Kriging as a GP model

Y; ~ N(g(s:),n%)
g(-) ~ GP(u,C(+0))

e Bayesian model specifies prior distributions for 8 (Bayesian kriging)

e Empirical Bayes/marginal likelinood (i.e., kriging)

— integrate gu., = (9(s1),- .., 9(s,)) out of model
— estimate 6
* maximizing marginal posterior
* maximizing marginal likelihood
* fitting variogram model for C'(-; 9)
— point estimate for spatial process:
E(g,..|Y,0) based conditional normal calculations
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(GAUSSIAN PROCESS DISTRIBUTION

e Infinite-dimensional joint distribution for g(x), € X:

< Example: g(-) a spatial process, X = R? -
* g(-) ~GP(u(:),C(-,-)) /X
e Finite-dimensional marginals are normal I’/
e Types of covariance functions, C(x;, x;):
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Stationary Correlation Functions

Correlation fxns Sample fxns
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e Differentiability controlled by v, asymptotic advantages (Stein)

e Familiar exponential (v = 0.5) and squared exponential (Gaussian)

(v — o0) correlations as special and limiting cases
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Computational challenges of GPs

e even marginal likelihood in normal error model is intensive:
— O(n?) fitting: |Cy + n*I| and (Cy + n*I)~ 1Y — pl)

e non-Gaussian spatial models particularly difficult

— spatial process can't be integrated out
— MCMC mixing is very slow because of high-level structure
* correlation amongst process values and
between process values and process hyperparameters
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Petrochemical exposure in Kaohsiung, Taiwan
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Modelling Framework

H; ~ Ber(p(x;,s;))
logit(p(xs,8:) = x;T B+ gol(ss)

e basic spatial model for g5 = (ge(s1), - -, go(Sn))

— GAM: g4(-) is a two-dimensional smooth term
* basis representation
9o = Zu

x Gaussian process representation:

9(-) ~ GP(u(-), Co(+,-)) = g5 ~ N(p, Co)
- GLMM: g; = Zu
x correlated random effects, u ~ N (0, X)
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Approaches

e Bayesian spectral basis model fit by MCMC (Wikle, 2002) [B-SB]

e penalized likelihood based on mixed model (radial basis functions)
with REML smoothing
(Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]

e penalized likelihood with GCV smoothing
(Wood, 2001, 2003, 2004) [PL-GCV]

e Bayesian mixed model/radial basis functions fit by MCMC
(Zhao and Wand 2004) [B-Geo]
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Bayesian spectral basis function model

computationally efficient basis function construction (Wikle 2002)

g” = Zu and g° = o Pg"

— piecewise constant gridded surface on k by k& grid
— P maps observation locations to nearest grid point

Z is the Fourier (spectral) basis and Zu is the inverse FFT

Zu is approximately a Gaussian process (GP) when...

— u ~ N(0,diag(my(w))) for Fourier frequencies, w
— spectral density, 7y(-), of GP covariance function defines V(u)

17



w1 =20

w1 =1

wi] = 2

w1 =3

Bayesian spectral basis functions

= wo = 3
wo =0 wo =1 wo = 2 2

18



Comparison with usual GP specification

e spectral basis uses FFT

— O ((k?) log(k?))

— additional observations are essentially free for fixed grid

— fast computation and prediction of surface given coefficients

— a priori independent coefficients give fast computation of prior
and help with mixing
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Penalized likelihood using GLMM framework with
REML [PL-PQL]

_1
g° = Zu, Z = ¥,;,Q.;%, u ~ N(0,02) - variance component pro-
vides complexity penalty

(2 contains pairwise spatial covariances between k knot locations
and ¥ between n data locations and k£ knot locations

potential covariance functions:

— thin plate spline generalized covariance function, C(7) = 72 log 7
— Matérn correlation function, R(7) = gy (2\{?) K, (M)
with p and v fixed

computationally efficient approximation of a Gaussian process rep-
resentation for g*°

PQL approach - IWLS fitting of (3, u) with REML estimation of o2
within the iterations using MM software
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GLMM basis functions

e radial basis functions centered at the knots

e 4 of 64 functions displayed:
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Penalized likelihood using GCV [PL-GCV]

thin plate spline basis for g(-)

truncated eigendecomposition of basis matrix increases computa-

tional efficiency
IWLS fitting of (3, w) with GCV estimation of penalty

easy implementation using the R mgcv library — gam()
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Bayesian geoadditive model [B-Geo]

e Bayesian version of GLMM framework already described

_1
- g°=7Zu,Z =V, 7 u~ N(0,02)
— natural Bayesian complexity penalty through prior on w

¢ thin plate spline covariance or Matérn correlation basis construction
of ¥ and 2

e MCMC implementation - ensuring mixing is not simple

— Metropolis-Hastings for w using conditional posterior mean and
variance based on linearized observations

— joint proposals for o2 and u to ensure that u remains compatible
with its variance component
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Simulated datasets

e 3 case-control scenarios: ng = 1, 000; n1 = 200; nwst = 2500 on 50 by 50 grid

e 1 cohort scenario: n = 10, 000; nwst = 2500 on 50 by 50 grid

! 0.0010 !

0.0I!OZ 0.0'!06
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Assessment on 50 simulated datasets
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Mixing and speed of Bayesian methods
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Taiwan revisited - assessment

Summed test deviance
over 10-fold C-V sets
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Penalization in the spectral approach

e GP representation zeroes out high-frequency coefficients as appro-
priate

e Spatial hyperparameter controls coefficient variances

g(-) ~ GP(u(:), *R(-, - p,v))

prior penalty sample functions
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Heterogeneous penalties
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— — true
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spatially-varying penalties are one option (e.g., Lang & Brezger
2004; Crainiceanu et al. 2004)

spatially-varying p in a GP context is another
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Outline

Motivating examples

Introduction to Gaussian processes (GPs)
Fast Gaussian process modelling

Flexible Gaussian process modelling
Why Bayes works for smoothing

The future: flexibility + efficiency + hierarchical modelling
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A nonstationary covariance

Higdon, Swall, and Kern (1999) model:

C’NS(a:z-,a:j):/ ke, (w)k,. (u)du

(4

P

guaranteed positive definite

Gaussian kernels give closed form:
ko, (u) o< exp(—(u—x;)" S (u

2

RNS(QL,’,, 1133) = Cij €XP (—(wz — CUJ)T (

g(-) ~ GP(p,0*?RN3(-, s 5(4)))

J

—z;))

32



0.5

0.3

0.1

0.8

0.4

0.0

Kernel standard deviation

Nonstationary GPs in 1-D

[

[ [

[

0.0 0.2 0.4 0.6 0.8 1.0
Some kernels
[ | | | | I
0.0 0.2 0.4 0.6 0.8 1.0
X

-1.0

Some sample functions

f(x)
15 2.0
I

1.0

0.5

00 04 08

33



Kernel structure
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Generalizing the kernel convolution approach

e Squared exponential form:

exp (- (Zj)j S ¢ exp <—(mi )" (Ei : Zﬂ')l (s — a;,,-)>

infinitely-differentiable sample paths

e 'Distance measures’:

Isotropy Tfj = (x; — wj)T(fBi — ;)
anisotropy 7,7 = (z; — ;)" X7 (z; — x)

nonstationarity  Q;; = (x; — x;)7” (EZ;Z’) (z; — x;5)

e Can we replace T,L-Qj with @Q;; in other stationary correlation func-
tions?
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A class of nonstationary covariance functions

e Theorem 1: if R(7) is positive definite for R, P =1,2,..., then

RN%(z;, xj) = ¢;jR(\/Qij)

is positive definite for R, P =1,2, ...

e Theorem 2: smoothness (differentiability) properties of the original
stationary correlation retained

e Specific case of Matérn nonstationary covariance:

r(u)12v—1 (2\fT>VK” (2\f7) - r(y)lzv—l (2 ”Q”)VK” (2 ”Q”’)

— advantages: more flexible form, differentiability not constrained,
possible asymptotic advantages
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Exponential and Matérn sample functions (stationary)

X2
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A basic Bayesian nonstationary spatial model

Bayesian nonstationary kriging model

Vi ~ Nglaws). ), @ € %2
g() ~ GP(Nvo-QRNS('a';VaE('))

Let RY> be the nonstationary Matérn correlation

Kernels (3,) constructed based on stationary GP priors

— define multiple kernel matrices, >, x € X
— smoothly-varying (element-wise) in domain
— positive definite

Fit via MCMGC, including parameters determining >:(-)
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Smoothly-varying kernel matrices

Spectral decomposition for each X, = I'L'A, T,

e in N2, parameterize each kernel using unnormalized eigenvector
coordinates (a,, b,) and the second eigenvalue (log A ..)

o define stationary GP priors for ®(-) € {(a(-),b(-), log(A2(-))}

e cfficiently parameterize each GP using basis function approxima-

tion (Zhao & Wand, 2004)

39



Colorado precipitation characterization
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Estimating Colorado precipitation
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Why doesn’t Bayes overfit?

e Fourier basis involves k2 (=4096, e.g.) coefficients

e Nonstationary covariance involves very highly-parameterized co-
variance structure

e No direct penalty on complicated spatial functions

e)

marg. lik. (prior predictiv

P(Y|M1)

data space

P(y|M;)
Model 1 -40.3 -18.9 -12.7
p=2.5
Model 2 -27.5 -21.1 -16.4

p=20.5
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What does a Bayesian approach give us?

ability to create rich hierarchical models that reflect our understand-
ing of the system

in environmental health applications

— the ability to incorporate time, latent variables, misaligned data
a natural penalty on overfitting

a recipe (perhaps slow) for estimation

proper characterization of the uncertainty

challenge lies less on the modelling side than with computations,
model comparison and evaluation, and reproducibility
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Future methodological work

collaborative work on spatio-temporal modelling

— computational approaches for applying existing methodological
ideas to real health data

GP computations and parameterization: flexibility + efficiency + hi-
erarchical modelling

— computational tricks for the nonstationary covariance; e.g., knot-
based approaches for faster computation

— use of a wavelet basis with irregular spatial data in a similar
framework as the specitral basis

combining deterministic and stochastic models, e.g. for air pollution

useful, practical methods for designing spatial monitoring networks
and determining power
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