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Modern Regression

Modern statistical regression involves a vast array of extensions to
the usual

Y = Xβ + ε

model.
In particular, Xβ is often replaced by

Complicated interactions of the X variables (e.g., regression
trees),
Known functional forms of the X variable(s), f (x , θ)
(nonlinear regression),
Unknown functions of the X variable(s) (nonparametric
regression),
Terms to capture spatial, temporal and spatio-temporal
structure in the outcome, and
Hierarchical structure that cluster observations into groups of
similar observations.
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PM Example
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Spatio-temporal Statistical Modeling

A spatio-temporal statistical model (Yanosky et al. 2009,
Environmental Health Perspectives; Paciorek et al. 2009,
Annals of Applied Statistics):

First stage for monthly spatial variation:

log PMit = µi + Xst
it β

st + gt(si ) + εit

Second stage model for spatial-only effects:

µi = Xs
i β

s + gµ(si ) + δi

X st ’s are spatio-temporally-varying predictors (e.g.,
meteorology), while X s ’s vary only spatially (e.g., population
density, road effects).

Spatio-temporal (gt(s)) and spatial (gµ(s)) terms account for
additional spatio-temporal structure.
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PM Predictions (Ambient Exposure Estimates)

PM2.5 predictions: northeast US (left) and greater Boston (right)

Predictions from the model at individual residences can then be
used as estimated exposures in health analyses.
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Advantages and Disadvantages of Empiricism

Advantages:

Predictions are empirically driven (calibrated and ’validated’)

Adding additional explanatory variables and spatio-temporal
structure to the model is easily done and readily evaluated in
terms of whether predictions are improved.

Prediction error is readily quantifiable.

Disadvantages:

Observations are expensive

Data-driven estimation of effects of important variables is
difficult because of data requirements and complicated
relationships.

Ex. interaction of wind direction, wind speed, source location,
receptor location
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An ’Easy’ Use of a Computer Model

The CALINE model represents air pollution from line sources based
on Gaussian diffusion.
One might simply make predictions from the computer model and
include as an explanatory variable in a statistical model.

Advantages:

Simplicity
Black box representation of complicated relationships

Disadvantages:

Computational cost of running the model for 10,000s of
prediction locations, potentially for many time steps.
Input data requirements, including emissions information
Model errors; in particular error from model ’extrapolation’
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Hierarchical (Latent Variable) Modeling

A basic hierarchical spatial model

Yi ∼ N (gi , σ
2) measurement model

g = (g1, . . . , gn) ∼ N (µ,Σ(ρ)) process model

{σ2, µ, ρ} ∼ P parameter model (Bayesian)

Here g is the unknown latent spatial field (the state of the
system). The structure of Σ determines the behavior of the
spatial field, g.

When one fits the model, estimating g, the result is a tradeoff
between fidelity to the data and constraints imposed by the
process representation and its covariance (Σ).

When statistical distributions are used to characterize all the
unknowns in the model, including ρ, these are Bayesian
hierarchical models.
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Two Statistical Models for Spatial Fields

g ∼ N (µ,Σ(ρ)) process

1 Gaussian process models for g .
1 The elements of Σ(ρ) are the pairwise covariances between gi

and gj (i.e., for any pair of locations).
2 The covariance is assumed to be a known function of (a) the

distance between a pair of locations and (b) θ.
3 θ controls how ’quickly’ the field varies spatial (i.e., frequency

or ’wiggliness’)

2 Markov random field models for g
1 g is evaluated only for areas and not individual locations
2 Σ(ρ) is actually represented as κQ = Σ−1

3 Q represents what pairs of locations are ’neighbors’ and how to
weight neighbors to make a prediction at a location of interest

Similar ideas are used for spatio-temporal fields.
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Gaussian process models illustrated
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Misalignment

Data may be collected at differing spatial and temporal scales.

Proxy information (computer model output, remote sensing
output) is often aggregated spatially.

Conceptually:

Ai ∼ N (

∫
Ri

g(s)ds, σ2)

Numerically: suppose g is represented on a very fine spatial
grid

Ai ∼ N (K>i g, σ2)
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Misalignment visualized
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Treating Proxy Information as Data

Let’s consider both observations, Y , and proxy information, A:

Yi ∼ N (K>Y ,i g, σ
2)

Aj ∼ N (K>A,j g, τ
2)

Why treat the proxy as data rather than explanatory variable?

Remote sensing information might be considered
’measurements’.
It allows us to more readily deal with missingness.
We want to relate the information to the latent field and
account for discrepancy, with a potential model ’validation’
analysis.
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Discrepancy
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A modified model:

Yi ∼ N(K>Y ,ig, σ
2)

Aj ∼ N(K>A,jD + K>A,jg, τ
2)
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Flexible Spatial Discrepancy Modeling

Consider additive bias as a spatial discrepancy process, D(·):

Yi ∼ N (K>y ,ig, σ
2
y )

Aj ∼ N (K>A,jD + β1K
>
A,jg, σ

2
a)

g ∼ N (Xβ,Σg (ρg ))

D ∼ N (Zα,ΣD(ρD))

X and Z are predictor variables for the pollution process and
the discrepancy term, respectively.

We can explore the relationship of the proxy and gold
standard through analysis of the spatial scales of D(·).
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Predicted PM

Y PM = g D A
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Results

Satellite AOD:

The model fitting suggests there is little common spatial
pattern to PM and AOD observations.

The discrepancy term, D, varies at both small and large scales.

As a result the model discounts AOD in predicting PM.

Atmospheric Chemistry Model (CMAQ):

Stronger relationship between CMAQ output and PM.

The discrepancy term also varies at small and large scales, but
more of the variation in the proxy appears to be signal than
for AOD.

Statistical model still heavily discounts the proxy.

Paciorek and Liu (2011) and Paciorek (submitted).
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Difficulties

Heavy data requirements.

Discrepancy is highly-structured, complex, and may be hard to
represent stochastically.

Misspecification of the proxy component of the model may
cause us to downweight the proxy relative to the observations.

At the same time, it is unknown, so a statistical treatment is
natural.

Chris Paciorek Measurements and Models 18
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Parameter estimation

Consider observations, Y1, . . . ,Yn corresponding to evaluation
of the computer model at input vectors, x1, . . . , xn.

If f (x; θ) is the output of the computer model, optimize a
cost function with respect to model parameters, θ, e.g.,

argminθ

n∑
i=1

(yi − f (xi ; θ))2

This is equivalent to assuming that the observation error is
N (0, σ2).

In some sense this is now an empirical nonlinear regression
model.

How are we to interpret the parameter values?

Chris Paciorek Measurements and Models 19
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Discrepancy

Of course the difference between an observation and the model
output is more than just noisiness in the measurements.

1 Observations and model output may be at different
aggregations (i.e., misaligned)

2 There will be systematic discrepancy between the model
output and the truth.

This discrepancy might be thought to relate to certain factors.
Perhaps build in a regression relationship.
’Systematic’ implies some ’correlation’ in some dimension of
the input space.

Chris Paciorek Measurements and Models 20
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Gaussian processes in variable space

A basic discrepancy model

Yi ∼ N (f (xi ; θ) + D(xi ; ρ), σ2)

We might assume D(xi ) and D(xj) are similar for xi similar to
xj .

We can represent this assumption as another Gaussian process
model, D ∼ N (0,ΣD(ρ)).
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Emulators

Suppose the code is computationally demanding and can only
be run m times at m values of the input vector, x1, . . . , xm.

Gaussian processes are also commonly used in these scenarios
as a low-dimensional approximation to the computer model.

Let f = f (x1; θ), . . . , f (xm; θ).

If we represent f as a Gaussian process in the space of x,

f ∼ N(µ,Σf (ρf )),

then we can predict (interpolate) the output of the code at
any new input vector, x∗.

Here ρ controls how ’quickly’ the model output changes as one
changes the input values.

Chris Paciorek Measurements and Models 22
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The State-of-the-statistical Art in Computer Models

Goals: calibration, uncertainty quantification, and prediction with
computationally-demanding computer models.
Approach: build a single statistical model

Yi = f (xi ,θ) + D(xi , ρD) + ε

that

1 Estimates (tunes/calibrates) unknown parameters in the
computer model.

2 Includes a discrepancy term for which we estimate parameters
that help quantify model inadequacy.

3 Includes an emulation component to limit the number of code
runs needed.

The approach is still somewhat unsatisfying in that characterizing
discrepancy is data-needy. Also, it doesn’t help much with
uncertainty quantification in cases where data are sparse or
unavailable (e.g., climate model projections).

Chris Paciorek Measurements and Models 23
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Data Assimilation (DA)

Computer models often represent systems evolving over time.

The goal of DA to use available data reflecting the system
state to tweak the model toward reality, while relying on the
model to capture the core dynamics in a way that sparse data
could not.

At the core, we have another hierarchical statistical model, a
’state-space’ model

Yt ∼ N (Ktgt , σ
2I)

gt ∼ N (f (gt−1, xt),Σg )

Chris Paciorek Measurements and Models 24
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Kalman Filter (KF)

Yt ∼ N (Ktgt , σ
2I)

gt ∼ N (f (gt−1, xt),Σg )

The algorithm to update the estimate of the state vector to
get ĝt (i.e., E (gt |Yt) and Var(gt |Yt) is the Kalman Filter
(KF), but is really just calculation of the posterior distribution
in a Bayesian hierarchical model.

Note that Σg here represents model error/uncertainty in the
state vector, treated stochastically.

DA is often done using the ensemble KF, propagating a
sample, {gi

t} based on the model (f ), and using the empirical
covariance of {gi

t} to estimate Σg .

Chris Paciorek Measurements and Models 25
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