Nonstationary Covariance Functions for Spatial Modelling

Chris Paciorek

Department of Biostatistics Harvard School of Public Health paciorek@hsph.harvard.edu

November 21, 2003

1

OUTLINE

- Gaussian processes and nonstationary covariance
- Generalized nonstationary covariance via convolution
- Application to nonstationary kriging
- A Bayesian model for nonstationary spatial processes
- Comparison with stationary modelling and free-knot splines
- Representations of stationary GPs for fast computation
 - Matérn-based basis functions
 - Fourier basis functions
- Efficient MCMC for generalized spatial models

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - ♦ Example: $f(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
 - $\ \ \, \bigstar \ \ \, f(\cdot)\sim \mathrm{GP}(\mu(\cdot),C(\cdot,\cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - ✤ nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - Example: $f(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
 - $\ \ \, \bigstar \ \ \, f(\cdot) \sim \operatorname{GP}(\mu(\cdot),C(\cdot,\cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - ✤ nonstationary

GAUSSIAN PROCESS DISTRIBUTION

- Infinite-dimensional joint distribution for $f(x), x \in \mathcal{X}$:
 - ♦ Example: $f(\cdot)$ a spatial process, $\mathcal{X} = \Re^2$
 - $\ \ \, \bigstar \ \ \, f(\cdot)\sim \mathrm{GP}(\mu(\cdot),C(\cdot,\cdot))$
- Finite-dimensional marginals are normal
- Types of covariance functions, $C(x_i, x_j)$:
 - ✤ stationary, isotropic
 - ✤ stationary, anisotropic
 - \diamond nonstationary

STATIONARY CORRELATION FUNCTIONS

• Differentiability controlled by ν , asymptotic advantages (Stein) 6

Degree of Smoothing

7

A NONSTATIONARY COVARIANCE

• Higdon, Swall, and Kern (1999) (HSK)

 $R^{NS}(x_i,x_j)=c_{ij}\int_{\Re^P}k_{x_i}(u)k_{x_j}(u)du$

- Guaranteed positive definite
- Gaussian kernels:

$$egin{aligned} k_{x_i}(u) &\propto & \exp\left(-(u-x_i)^T \Sigma_i^{-1}(u-x_i)
ight) \ R^{NS}(x_i,x_j) &= & c_{ij} \exp\left(-(x_i-x_j)^T \left(rac{\Sigma_i+\Sigma_j}{2}
ight)^{-1}(x_i-x_j)
ight) \end{aligned}$$

•
$$f(\cdot) \sim \mathrm{GP}(\mu, \sigma^2 R^{NS}(\cdot, \cdot))$$

NONSTATIONARY GPS IN 1D

9

NONSTATIONARY GPS IN 2D

GENERALIZING THE HSK KERNEL METHOD

• Squared exponential form:

$$\exp\left(-\left(rac{ au}{\kappa}
ight)^2
ight) \Rightarrow c_{ij}\exp\left(-(x_i-x_j)^T\left(rac{\Sigma_i+\Sigma_j}{2}
ight)^{-1}(x_i-x_j)
ight)$$

Infi nitely-differentiable sample paths

• 'Distance measures'

isotropy
$$au_{ij}^2 = (x_i - x_j)^T (x_i - x_j)$$

anisotropy $au_{ij}^{*2} = (x_i - x_j)^T \Sigma^{-1} (x_i - x_j)$
nonstationarity $Q_{ij} = (x_i - x_j)^T \left(\frac{\Sigma_i + \Sigma_j}{2}\right)^{-1} (x_i - x_j)$

• Can we replace τ_{ij}^2 with Q_{ij} in other stationary correlation functions?

GENERALIZED NONSTATIONARY COVARIANCE

• Theorem 1: if $R(\tau)$ is positive definite for $\Re^P, P = 1, 2, \ldots$, then

$$R^{NS}(x_i,x_j) = rac{|\Sigma_i|^{rac{1}{4}}|\Sigma_j|^{rac{1}{4}}}{\left|rac{\Sigma_i+\Sigma_j}{2}
ight|^{rac{1}{2}}}R\left(\sqrt{Q_{ij}}
ight)$$

is positive definite for $\Re^P, P = 1, 2, \dots$

• Theorem 2: Smoothness properties of original stationary correlation retained

PROOF (SKETCH)

$$R(au) = \int_0^\infty \exp(- au^2 w) h(w) dw$$
 (Schoenberg, 1938)

$$R^{NS}(x_{i}, x_{j}) = \frac{2^{\frac{P}{2}} |\Sigma_{i}|^{\frac{1}{4}} |\Sigma_{j}|^{\frac{1}{4}}}{|\Sigma_{i} + \Sigma_{j}|^{\frac{1}{2}}} \int_{0}^{\infty} \exp(-Q_{i,j}w)h(w)dw$$

$$= \frac{2^{\frac{P}{2}} |\Sigma_{i}|^{\frac{1}{4}} |\Sigma_{j}|^{\frac{1}{4}}}{|\Sigma_{i} + \Sigma_{j}|^{\frac{1}{2}}} \cdot \int_{0}^{\infty} \exp\left(-\frac{1}{2}(x_{i} - x_{j})^{T}\left(\frac{\Sigma_{i} + \Sigma_{j}}{2w}\right)^{-1}(x_{i} - x_{j})\right)h(w)dw$$

$$= \int_{0}^{\infty} \int_{\Re^{P}} k_{i,w}(u)k_{j,w}(u)duh(w)dw$$

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} C(x_{i}, x_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \int_{0}^{\infty} \int_{\Re^{P}} k_{i,w}(u) k_{j,w}(u) duh(w) dw \\ &= \int_{0}^{\infty} \int_{\Re^{P}} \sum_{i=1}^{n} a_{i} k_{i,w}(u) \sum_{j=1}^{n} a_{j} k_{j,w}(u) duh(w) dw \\ &= \int_{0}^{\infty} \int_{\Re^{P}} \left(\sum_{i=1}^{n} a_{i} k_{i,w}(u) \right)^{2} duh(w) dw \ge 0. \end{split}$$

• Covariance must depend only on location-specific kernels

NONSTATIONARY MATÉRN COVARIANCE

$$rac{1}{\Gamma(
u)2^{
u-1}} \left(rac{2\sqrt{
u} au}{\kappa}
ight)^{
u} K_
u \left(rac{2\sqrt{
u} au}{\kappa}
ight) \Rightarrow rac{1}{\Gamma(
u)2^{
u-1}} \left(2\sqrt{
u}Q_{ij}
ight)^
u K_
u \left(2\sqrt{
u}Q_{ij}
ight)$$

Advantages: more flexible form, differentiability not constrained, possible asymptotic advantages

NONSTATIONARY KRIGING

- basic kriging model: $Y \sim N(\mu, (\sigma^2 R_f(\kappa, \nu) + \eta^2 I))$
- $\sqrt{Q_{ij}}$ is an anisotropic distance if $\Sigma_i = \Sigma_j$
- To krige, estimate parameters of $\Sigma_{(\cdot)}$ locally and proceed as usual
- Possibilities
 - knit together region-specific covariance structures
 - stimate local covariance parameters based on a moving window
 - any approach that creates location-specific kernels produces a legitimate covariance structure

NONSTATIONARY KRIGING EXAMPLE

- precipitation anomalies in Colorado, August 1963
- fit covariance structure by maximizing marginal likelihood (EB):

	η	σ	κ
whole state	3.75	7.10	5.49
eastern CO	3.63	9.50	7.92
western CO	3.46	3.23	0.69

• could also use standard variogram fitting

COLORADO PRECIPITATION ANOMALIES

Stationary kriging

Nonstationary kriging

COLORADO PRECIPITATION ANOMALIES

COLORADO PRECIPITATION ANOMALIES

A BASIC BAYESIAN SPATIAL MODEL

• Bayesian model

$$egin{array}{rcl} Y_i &\sim & N(f(x_i),\eta^2), \; x_i \in \Re^2 \ f(\cdot) &\sim & ext{GP}(\mu,\sigma^2 R^{NS}(\cdot,\cdot;
u,\Sigma_{(\cdot)})) \end{array}$$

- * Let R^{NS} be the nonstationary Matérn correlation
- ***** Kernels (Σ_x) constructed based on stationary GP priors

Smoothly-varying kernel matrices

- Goals:
 - lacksimDefine multiple kernel matrices, $\Sigma_x, \ x \in \mathcal{X}$
 - Smoothly-varying (element-wise) in covariate space
 - Positive definite
- Approaches:
 - ♦ Parameterize ellipse foci and size $(\mathcal{X} = \Re^2)$ (HSK)
 - mixing issues and non-generalizability to higher dimensions
 - ♦ Cholesky decomposition ($\mathcal{X} = \Re^{P}$): $\Sigma_{x} = L_{x}L_{x}^{T}$
 - \blacklozenge hard to simultaneously control direction and size

Smoothly-varying kernel matrices (2)

- Spectral decomposition (\Re^P): $\Sigma_x = \Gamma_x^T \Lambda_x \Gamma_x$)
 - * in \Re^P , Γ_x parameterized as first eigenvector plus successive orthogonal vectors in reduced-dimension subspaces
 - * in \Re^2 , stationary GP priors on unnormalized eigenvector coordinates (a_x, b_x) and on logarithm of eigenvalues $(\lambda_{x,1}, \lambda_{x,2})$
 - * efficient parameterizations of stationary GPs for $\Phi \in \{a_x, b_x, \lambda_{1,x}, \lambda_{2,x}\}$ [more later]

Empirical Assessment

- Compare performance to:
 - ✤ stationary spatial model
 - **\diamond** Bayesian models in which $f(\cdot)$ is a spline
 - BMARS (Denison, Mallick & Smith 1998) tensor products of univariate splines
 - ◆ BMLS (Holmes & Mallick 2001) multivariate linear splines
 - spatial deformation approach (Sampson, Guttorp, et al.) (software?)

RESULTS - SIMULATED NONSTATIONARY FUNCTION

RESULTS - SIMULATED NONSTATIONARY FUNCTION (2)

test MSE

RESULTS - COLORADO PRECIPITATION

RESULTS - COLORADO PRECIPITATION (2)

28

Representations of Stationary Processes

- Applications
 - Eigenprocesses in the nonstationary model
 - Function representation in generalized spatial modelling
 Y ~ D(g^{-1}(X\beta + \Phi(x)))
- Goals
 - Efficient computation
 - Close approximation to the covariance structure of a stationary GP

MATÉRN BASIS FUNCTIONS (KAMMANN & WAND)

•
$$\Phi = \mu + \sigma Z \Omega^{-\frac{1}{2}} u$$

- $\ \, \boldsymbol{ \ast } \ \, \boldsymbol{ Z } = \left(\boldsymbol{ C } (\parallel \boldsymbol{ x } _i \boldsymbol{ \kappa } _k \parallel) \right),_{1 \leq i \leq n, 1 \leq k \leq K }$
- $\ \ \, \boldsymbol{ \diamond } \ \, \boldsymbol{ \Omega } = \left(C(\parallel \kappa_j \kappa_k \parallel) \right),_{1 \leq j \leq K, 1 \leq k \leq K } \\$

*
$$C(\cdot)$$
 a stationary covariance function

- matrix operations based on \boldsymbol{K} knots, so more efficient
- motivation: if $\{\kappa_k\} = \{x_i\}, \operatorname{Cov}(\Phi(\cdot)) = C(\cdot)$

FOURIER BASIS FUNCTIONS (WIKLE)

- $\Phi_{\scriptscriptstyle ext{dat}} = \mu + \sigma A \Phi_{\scriptscriptstyle ext{grid}}$
- $\Phi_{\text{grid}} = \Psi u$ (discretized process)
- u elements are independent, complex-valued RVs
 - \diamond variance based on spectral density of stationary $C(\cdot)$
- Ψu is the inverse FFT (Ψ are Fourier basis vectors)
- propose blocks of values of *u* with focus on low-frequency coefficients

APPLICATION TO THE NONSTATIONARY MODEL

- Represent each eigenprocess as a stationary GP
- Fix some hyperparameters
 - Fix κ and let σ do the smoothing
 - Fix σ and let κ do the smoothing
- When sample hyperparameters, sample eigenprocess as well:
 - $\label{eq:phi} \Phi = \mu + \sigma B(\kappa,\nu) u$

APPLICATION TO PUBLIC HEALTH DATA

- Features of spatial disease modelling
 - ✤ case-control binary outcomes common
 - ✤ relatively large sample sizes (100s to 1000s)
 - ✤ models must include individual-level covariates
 - $Y \sim \text{Ber}(\text{logit}^{-1}(X\beta + \Phi(x))))$
- FFT approach is particularly efficient
 - for fixed grid, likelihood scales as O(n)
- Work in progress to compare to frequentist estimation:
 - mixed model approximation (penalized quasi-likelihood)
 - efficient thin-plate splines (Simon Wood, R mgcv library)

CONCLUSIONS & COMMENTS

- Generalized HSK nonstationary covariance provides a family of nonstationary covariances
- Accounting for nonstationarity can improve fit
- Limitations: sharp changes in function, boundaries and other complicated structure not well captured
- Computational speed and mixing remain issues
- Nonstationary GPs can be used in general nonparametric regression setting