Statistical Inference in Paleoecology,
with a Focus on Bayesian Hierarchical
Modeling

Chris Paciorek
Department of Statistics
University of California, Berkeley
www.stat.berkeley.edu/~paciorek

Joint work with Jason McLachlan, Notre Dame Biology, and the PalEON
Project (Pls: J. McLachlan, M. Dietze, S. Jackson, C. Paciorek, J.
Williams)

Chris Paciorek Hierarchical Modeling for Paleoecology 1



Goals, Data, and Challenges

(Some) Paleoecological Data Sources

@ Counts of pollen grains from sediment cores in lakes and other
depositional environments

o Inference: vegetation composition, vegetation types, ecosystem
boundaries

@ Counts of charcoal particles from sediment cores
e Inference: fire frequency and severity
@ Ring widths from tree cores
o Inference: growth, biomass and carbon balance
@ Fire scar data from tree cores

o Inference: fire frequency and severity
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Goals, Data, and Challenges

(Some) Goals of Paleoecology

@ Understand past distributions of vegetation and changes in
those distributions
@ Use long-term data to understand the nature of vegetation
dynamics:
e competition
e species dispersal/spread
e species declines and causes of those declines — impacts of

disturbance, disease, herbivory, climate
e stability of species assemblages

@ Understand patterns and rates of large-scale disturbance
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Goals, Data, and Challenges

Challenges of Paleoecological Data Sources

@ Sparsity and irregularity in space and time

o Certain proxies are only available in
certain regions
@ Many records of limited duration

@ Lack of replication

@ Proxies are not direct measurements of the
quantities we care about

@ Calibration data are scarce

@ Calibration against modern data may be less
relevant for periods in the past (the no analog
problem) i 31

i

@ Many of the quantities of interest do not have  Temporal sampling den-
paleodata proxies

sity for 23 ponds in cen-
@ Dating is uncertain and dating methods are tral New England

expensive
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Analysis Strategies

Analysis of Pollen Diagrams
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Analysis Strategies

Pollen in a Spatial Context
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Analysis Strategies

Dimension Reduction
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Analysis Strategies

Calibrating Pollen to Vegetation
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Analysis Strategies

Ecosystem Boundary Reconstruction
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Analysis Strategies

Fire History Reconstruction

Fire return intervals from Local area burned from

peak detection background charcoal

) gpen Lo )

Table 3. Alternative regression models rehting charcoal accumulation In 2 composte record to area burned from Ao 1675 to 1960 (n = 19).
Positive reduction of error (RE) values Indicate that the model i a better predicor of area burned than the mean of the serles alone (Le. the
model has ki), Cross-validation nvoived constructing 5000 models based on a randorn subset of data points (53%) and then calulating the
RE statisti for predictions using data excluded from the model (see methods)

Stes conubuing_ Modehy=a® Fax B -, w Cross-vadation RE,
DU.DR HAWT o= sz 31 o0 0w om0 o0&
MAWT a= 25950, w05 oo ol 0 o4 om

ogetaton 200 and pask magritude o= 70780, 450 000 0s 064 053 06

STV L Epa———

s ofcatbated )
(6) Area bumed as

08 F
e H
508 wg
% 04 » %
2819 o s, ks D 5oz ‘ H
o 0§
0 750 a0 ss0 00 de 0 02 04 06 08
4 : yerAD GHAR index

Figure 4. Comparison between
record: s e el mmmmn rate (CHAR) index (gray bars, eft y-axi). and area burned (chick pay i:..@..,m) for the Ao
1675-1 (b) Scatter plot of rea burned ‘CHAR from the with th

and adjusted P statiste. e s represent 90% confidence Intervas for new predietions

0 Vegetaton z0ne and poak magnitude

Lt —r “\H " . |

Tene (s f clbrned 71 :

D s For exsale, while 05 i ot rcrds NI Higuera et al. (2011) Ecological Applications 21:3211
P — e o .ia:m

We ineoduce thr geneal tools that ciliate the our e

hris Paciorek rarchical Modeling for Paleoecology



Hierarchical Modeling

Overview

@ Hierarchical statistical models build a (possibly complicated)
statistical model that relates data to unknown quantities of interest
in (relatively simple) stages.

o Measurement model: Data are related to a latent process
(often a space-time process representing a relevant field)

o Process model: Latent process is modeled stochastically
(potentially with deterministic components) that build in
appropriate dependencies

o Parameter model: Additional 'tuning’ parameters govern the
behavior of the latent process.

@ The goal is to make inference (including uncertainty assessment)
about the the key quantities of interest, which may be the latent
process or parameters or functionals of those.

@ Given a model, there are standard (but sometimes inadequate)
computational approaches to computing the inferences
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Hierarchical Modeling

Example: STEPPS Model for Vegetation Reconstruction
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Hierarchical Modeling

Calibration Data

Township witness tree data Pollen sediment samples
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183 towns, 26-3149 trees per town 23 ponds, 500 grains per pond

Chris Paciorek Hierarchical Modeling for Paleoecology 13



Hierarchical Modeling

A Cartoon of the Model

Estimation phase (veg'n and pollen) Prediction phase (pollen only)
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Hierarchical Modeling

Calibration of Pollen to Vegetation
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Hierarchical Modeling

Inference: Time

beech birch chestnut hemlock hickory maple oak pine spruce other

: % W

-1500 -1000 -500

-2000

-2500

00 03 00 03 000 015 0.0 04 000 0.15 0.0 04 0.00 0.5 0.00 0.25 0.00 0.15 0.00 0.25

— — — = raw pollen proportions
— o — = model-estimated vegetation proportions
— — —= uncertainty estimates

Chris Paciorek Hierarchical Modeling for Paleoecology 16



Hierarchical Modeling

Inference: Space

chestnut hemlock composition
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We can also present spatial predictions in the context of
uncertainty, in particular assessing our confidence in changes over
time and differences across space.

Chris Paciorek

hical Modeling for Palececology 17



Hierarchical Modeling

Inference: model parameters

Pollen scaling Long-distance dispersal range
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Hierarchical Modeling

Key Aspects of Hierarchical Approach

@ Sparsity and irregularity in space and time:

@ Certain proxies are only available in certain regions
@ Many records of limited duration

@ Lack of replication:

@ Proxies are not direct measurements of the quantities we care about:

@ Calibration data are scarce

@ Calibration against modern data may be less relevant for periods in the
past (the no analog problem)

@ Many of the quantities of interest do not have paleodata proxies

@ Dating is uncertain and dating methods are expensive:
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Hierarchical Modeling

Data sparsity

Data dropout tends to have large effects — e.g., losing an
observation far from other observations can cause large
changes in predictions

To what extent can we interpret parameter estimates as
physically meaningful?

Computation can be difficult
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The PalEON Perspective

PalEON: A PaleoEcological Observatory Network

@ Multi-institution collaboration of paleoecologists, statisticians,
and ecosystem modelers

@ Overarching goal: Use paleodata to help understand global

change
@ Current focus on northeastern/midwestern US over the past

3000 years
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The PalEON Perspective

Motivation for PalEON

@ Paleoecological data have not been used extensively in
considering global change, even though they are the only data
on long-term changes

@ Proxies are often not directly related to quantities of interest
for global change and are not in a form directly useful for
quantitative analysis

@ Terrestrial ecosystem models and paleodata are at different
spatial and temporal scales
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The PalEON Perspective

PalEON Goals

Develop networks of paleodata, synthesized statistically, to inform
ecosystem models:

Assess models against paleodata

Initialize models based on paleodata

°
@ Assimilate paleodata into models
@ Improve model formulations

°

Prioritize new data collection
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