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GAUSSIAN PROCESS DISTRIBUTION

e Infinite-dimensional joint distribution for Z(x), * € X

[ Example: Z(-) aregression function, X = R¥ -
s .
0 Z(-) ~GP(u(-),C(-)) //X AN
/ \
e Finite-dimensional marginals are normal I/ . \

e Types of covariance functions, C(x;, x;):
[1 stationary, isotropic
[1 stationary, anisotropic

[1 nonstationary \
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STATIONARY CORRELATION FUNCTIONS

Squared exponential:  R(7) = exp (_ (5)2>

Correlation function

Correlation
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DEGREE OF SMOOTHING

0.04

K=

K=0.2

0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2 0.3 0.4 0.5 0.6 0.7

0.1



NONSTATIONARY COVARIANCE

Higdon, Swall, and Kern (1999)
RN3(z;,x5) = ¢ [up ko, (U) ke, (u)du
Guaranteed positive definite

Normal kernels:
ke, (u) o< exp (—(u — )T (u — azz))
NS T (247"
R™?(x;,x;) = cexp|—(x; —x;) (T) (x; — ;)

Z(-) ~ GP(u, UZRNS('a )
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NONSTATIONARY GPSIN 1D
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NONSTATIONARY GPSIN 2D

Kernel Structure Sample Function
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GENERALIZING THE KERNEL METHOD

e Squared exponential form:

exp (— (£)2> = cexp (—(«’Bi — x;)" (%Y1 (zs — wj))

Infinitely-differentiable sample paths

e ‘Distance measures’

Taw, = (@i — )" (@ — x5)
T, = (@i —x;)T 27 (@ — x5)

3 4+ 3,
2

—1
qu‘,,wj — (wz — wj)T ( ) (m’b - mj)

e Can we replace 72 with Qz,;,=; In other stationary correlation
functions?
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STATIONARY CORRELATION FUNCTIONS
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e Differentiability controlled by v, asymptotic advantages (Stein)

e Nonstationary form is positive definite
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GENERALIZED KERNEL METHOD

e Theorem : if R(7) is positive definite for RP,p =1, 2,.. ., then

1 1
> 32|22
RNS(wiawj) — | Zl_'_lzjgll R (\/ Qwi,mj)
2

‘ 2

IS positive definite for RP,p =1,2,...

e Summary of theorems on smoothness properties of sample paths:

[1 Based on original stationary correlation function

[1 Provided kernel matrices vary sufficiently smoothly in covariate

space
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SMOOTHLY-VARYING KERNEL MATRICES

e Goals:
(ab)
[1 Define multiple kernel matrices, X,
[1 Smoothly-varying in covariate space

[1 Positive definite

e Use spectral decomposition (X, = I":;';AwI‘w)

[1 I', parameterized as first eigenvector plus successive orthogonal
vectors in reduced-dimension subspaces

[1 stationary GP priors on unnormalized eigenvector coordinates
(az, by ) and on logarithm of eigenvalues (Az,1, Az,2)

[1 gets unwieldy and highly-parameterized for large P
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(MULTIVARIATE) NONPARAMETRIC REGRESSION MODEL

e Bayesian model

Y, ~ N(f(z:),n?), ©; € R"
f() ~ GP(“& 0'2RNS('9';V9 9))
O Let RV be the nonstationary version of the Matérn

[1 Kernel parameters (8) with stationary GP priors

e Compare performance to Bayesian models in which f is a spline
0 z; € R1: BARS (DiMatteo, Genovese & Kass 2002)
0 z; € R, P > 1:

[1 BMARS (Denison, Mallick & Smith 1998) - tensor products
of univariate splines

[ BMLS (Holmes & Mallick 2001) - multivariate linear splines
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REGRESSION RESULTS - 1D

MSE

NS GP fit

BARS fit
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REGRESSION RESULTS - 1D

BARS fit NS GP fit MSE
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REGRESSION RESULTS - 1D

MSE

NS GP fit
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REGRESSION RESULTS - 2D

True function NSGP estimate standardized MSE
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REGRESSION RESULTS - REAL DATA

e Dec. 1993 mean temperatures in Americas, n = 109
P = 2: longitude, latitude

e daily ozone in NY, n = 111
P = 3: radiation, temperature, wind speed

e cross-validated MSE

model | temperature | ozone
Lin Regr — 0.021
GAM — 0.020
BMARS 1.74 0.0062
BMLS 2.40 0.0062
SGP 1.40 0.0062
NSGP 1.10 0.0054
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RECOMMENDATIONS

1D:
use BARS

>1D: if response likely additive,
use BARS

2-3D: if response likely relatively homogeneous,
use stationary GP (for non-normal data, n < 500)

2-3D: if response likely heterogeneous, n < 250,
use nonstationary GP (surface-fitting scenario)

P or n large:
use multivariate spline methods or another approach
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GENERALIZED NONPARAMETRIC REGRESSION

e Model:

Y; ~ D(g(f(x:)))

f(-) ~ GP(p, a2 RN5(:, )
e Examples:

[0 count data (D = Poisson, g—1 = log)
[0 binary data (D = Bernoulli, g—1 = logit)
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Prob. of rainfall
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ISSUES IN FITTING THE GP MODEL

Parameterizations

Slow mixing

[1 Posterior mean-centering for the generalized model:
joint proposal for hyperparameter(s),
f conditional on hyperparameter proposal

Numerical sensitivity
Parameter identifiability

Computational speed

24



0.8

0.4

-
o

A SIMPLE BERNOULLI EXAMPLE

| | | | | |
00 02 04 06 0383 10

X
Fit a stationary GP model, f(-) ~ GP(u, 0’ R(k))

25



o _
o — N
N —
1 _
T~ —
(3
c° o _
O -
— _]
I
o~ _ wn _|
| o
o
| | | | | | | | | | | | | | |
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
(D —
< - o N
YT ~
(3
5o ©
(8]
c
) (TI ] N
‘—| —
<||' -
o —
| | | | | | | | | | | | | | |
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
257
@
€
O -
o
<
<
£o -
17
o)
a 1o |

| | | | | | | | | | | | | |
5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

26

o —



NONSTATIONARY CORRELATION IN CLIMATOLOGY

R((60°,180°), x) R((30°,180°), x)

BLACK= NO DATA



APPLICATION TO A CLIMATOLOGICAL DATASET

e Data: index of storm activity:
[ grid of 288 locations in Northern Hemisphere

[1 51 years of data (replicated data)

e Goal: analyze location-specific time trends simultaneously in space,
accounting for residual spatial correlation

e Bayesian model:
O Yie ~ N(Z¢(x3), 52)
O Zi(x;) = a(xs) + B(xi) - t + er(x5)
0 e(-) ~ GP(0,CN5(-,+))

[1 Stationary GP priors for the other processes
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L ESSONS FROM THE SPATIAL MODELLING

e Modelling complicated covariance structure is hard

[1 Nonstationary model fits residual structure better than stationary
model, but still seems to miss structure in the data

[1 Lack of fit in stationary model drives up residual variances

[1 Nychka, Wikle & Royle (2001) method for wavelet smoothing of
empirical residual covariance fits poorly

e GP models shrink slope point estimates and standard errors

e For one dataset, simultaneous testing results give many more
locations with significant trends than FDR, but not in a 2nd dataset
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FUTURE WORK

e MCMC fitting: approaches to improve mixing and speed fitting
[1 Simplified parameterization of the NS GP model

[1 Computational efficiency

e Covariate selection in the NS GP model
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FUTURE WORK — SPATIAL MODEL

e Further investigation of methods for flexibly fitting covariance
structure of replicated data

(1 Improved fitting criteria for wavelet smoothing of empirical
covariance

e Incorporation of nonlinear time models
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FITTING THE GP REGRESSION MODEL

).0) ©.6 6. @
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Rf
fv /@ Some approaches
—— ] + Integrate £ out of the model
—Y (normal likelihood)

e Fix the hyperparameters

ZG{f,Al,---,)\P,'Yl,---,'YQ} e Full MCMC
(non-conjugate processes)
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PARAMETERIZATIONS OF GAUSSIAN PROCESSES

e (non-centered) Z = pu + o L(K)w
(1 directly sample w not Z

o (centered) Z ~ N(u,0*L(k)L(r)T)
[1 straightforward sampling
I Z not consistent with proposed hyperparameters

[1 joint sampling of centered parameterization
0 Z,(u,2),(k, 2), (0, Z)
0 Z"=p" +0"L(k")(acL(k))"(Z — )
O avoids numerical issues with (o L(k)) ™' (Z — p)
[ Z™ consistent with proposed hyperparameters, but not likelihood

~

(I joint sampling but make use of approximate posterior mean, Z

[1 Not feasible for processes involved in nonstationary correlation
function
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POSTERIOR MEAN-CENTERING

Joint sampling centers around p:
Z* = p* + 0" L(k")(eL(k))"(Z — p)
Proposal doesn’t take account of likelihood

PMC centers around Z:
Z* =Z* +o*L(k*)(cL(k))"*(Z — Z)

conjugate case:

~

Z = Cy(Cz+Cy) 'u+Cz(Cz+Cy) 'y
= p+Cz(Cz +Cy) '(y — p)
generalized case: Z = p + C5(Cs + Cy+) " (y' — p)
use IRLS approach
yi =g ' (yi) = (@) + 553 (yi — g(=:))

2
(Cy)ii & (g?g:g) (Cy )i




