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What do we want to do with hierarchical models?

1. Core algorithms 3. Idea combinations

e MCMC Particle MCMC

e Sequential Monte Carlo Particle Filter with replenishment

* Laplace approximation MCMC/Laplace approximation

* Importance sampling Dozens of ideas in recent JRSSB/JCGS issues

2. Different flavors of algorithms

* Many flavors of MCMC

e Gaussian quadrature

* Monte Carlo expectation maximization (MCEM)
e Kalman Filter

e Auxiliary particle filter

e Posterior predictive simulation

* Posterior re-weighting

* Data cloning

* Bridge sampling (normalizing constants)
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* YOUR NEW IDEA HERE NIMBLE: extensible software for
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What can a practitioner do with hierarchical models?

Two basic software designs:

1. Typical R package = Model family + 1 or more
algorithms
* GLMMs: Ime4, MCMCglmm
* GAMMSs: mgcv
* spatial models: spBayes, INLA

2. Flexible model + black box algorithm
* BUGS: WIinBUGS, OpenBUGS, JAGS
* PyMC
* INLA
e Stan



Existing software

Model Algorithm
: : ()
C===)
Oa020

e.g., BUGS (WinBUGS, OpenBUGS, JAGS), INLA, Stan,
various R packages

NIMBLE: extensible software for
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NIMBLE: The Goal

Model Algorithm language
: : ()

NIMBLE: extensible software for
hierarchical models (r-nimble.org)



Divorcing Model Specification
from Algorithm

MCMC Flavor 1

@ @ @ MCMC Flavor 2
Data cloning
@ @ @ Particle Filter
MCEM

Quadrature Importance Sampler

Your new method

Maximum likelihood



Background and Goals

Software for fitting hierarchical models has opened
their use to a wide variety of communities

Most software for fitting such models is either model-
specific or algorithm-specific

Software is often a black box and hard to extend

Our goal is to divorce model specification from
algorithm, while

— Retaining BUGS compatibility

— Providing a variety of standard algorithms

— Allowing developers to add new algorithms (including
modular combination of algorithms)

— Allowing users to operate within R
— Providing speed via compilation to C++, with R wrappers



NIMBLE System Summary

R objects + R under the hood

statistical model
(BUGS code)
+

algorithm
(nimbleFunction)

R objects + C++ under the hood

<> We generate C++ code,
<> compile and load it,
<> provide interface object.



NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm specification

NIMBLE programming language within R = R/C++
algorithm object

3. Algorithm library

MCMC, Particle Filter/Sequential MC, etc.

NIMBLE: extensible software for
hierarchical models (r-nimble.org)
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User Experience: Creating a Model from BUGS

littersCode <- nimbleCode({ ¢2)
for(jin 1:G) { 0
for(l'in 1:N) { @i ®
(i, j1 ~ dbin(pli, j1, nli, jI);
p[i, j1 ~ dbeta(al[j], b[j]);
} @
mul[j] <- a[jl/(alj] + b[j]); )
theta[j] <- 1.0/(a[j] + b[j]); mo
alj] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001);

)

Parse and process BUGS code.

Collect information in model object. Use igraph plot method (we also use

this to determine dependencies).

> littersModel <- nimbleModel(littersCode, constants = list(N = 16, G = 2), data = list(r = inputSr))
> littersModel_cpp <- compileNimble(littersModel)

Provides variables and functions
(calculate, simulate) for algorithms to

use.
NIMBLE: extensible software for

hierarchical models (r-nimble.org) 3
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Programming with Models

littersCode <- nimbleCode( {
for(j in 1:G) {
for(l'in 1:N) {
(i, j1 ~ dbin(pli, jI, n[i, j1);
p[i, j] ~ dbeta(alj], b[j]);
}
You give NIMBLE: mulj] <- a[jl/(a[j] + blj]);
thetal[j] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001); })

> littersModelSa[1] <- 5

> simulate(littersModel, ‘p')

> p_deps <- littersModelSgetDependencies(‘p’)
> calculate(littersModel, p_deps)

> getLogProb(pumpModel, r')

You get this:

NIMBLE also extends BUGS: multiple parameterizations, named parameters, and
user-defined distributions and functions.



User Experience: Specializing an Algorithm to a Model

littersModelCode <- modelCode({
for(jin 1:G) {
for(lin 1:N) {
r[i, j] ~ dbin(pli, jl, nli, j1);
pli, j] ~ dbeta(al[jl, blj]);

}

mulj] <- a[jl/(a[j] + b[jl);

theta[j] <- 1.0/(a[j] + b[j]);

a[j] ~ dgamma(1, 0.001);

b[j] ~ dgamma(1, 0.001);
)

> littersMCMCspec <- configureMCMC(littersModel)

> littersMCMCspecSgetSamplers()

[...snip...]

[3] RW sampler; targetNode: b[1], adaptive: TRUE, adaptinterval: 200, scale: 1
[4] RW sampler; targetNode: b[2], adaptive: TRUE, adaptinterval: 200, scale: 1
[5] conjugate_beta sampler; targetNode: p[1, 1], dependents_dbin: r[1, 1]

[6] conjugate _beta sampler; targetNode: p[1, 2], dependents_dbin: r[1, 2]
[...snip...]

> littersMCMCspecSaddSampler(‘a[1]’, ‘slice’, list(adaptinterval = 100))

> littersMCMCspecSaddSampler(‘a[2]’, ‘slice’, list(adaptinterval = 100))

> littersMCMCspecSaddMonitors(‘theta’)

> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileNimble(littersMCMC, project = littersModel)

> littersMCMC_CppSrun(20000)




User Experience: Specializing an Algorithm to a Model (2)

littersModelCode <- quote({
for(j in 1:G) {
for(lin 1:N) {
(i, j1 ~ dbin(pli, j1, ni, j1);
pli, j] ~ dbeta(al[j], b[j]);
}
mul[j] <-a[jl/(alj] + blj]);
thetalj] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);

b[j] ~ dgamma(1, 0.001);

> littersMCEM <- buildMCEM(littersModel, latentNodes = ‘p’, mcmcControl = list(adaptinterval =
50), boxConstraints = list( list(‘a’, ‘b’), limits = ¢(0, Inf))), buffer = 1e-6)

> set.seed(0)

> littersMCEM(maxit = 50, m1 = 500, m2 = 5000)

Modularity:

One can plug any MCMC sampler into the MCEM, with user control of the sampling strategy, in place
of the default MCMC.




NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm specification

NIMBLE programming language within R = R/C++
algorithm object

3. Algorithm library

MCMC, Particle Filter/Sequential MC, etc.

NIMBLE: extensible software for
hierarchical models (r-nimble.org)
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NIMBLE: Programming With Models

We want:
* High-level processing (model structure) in R

* Low-level processing in C++



NIMBLE: Programming With Models

objectiveFunction <- nimbleFunction (

setup = function(model, nodes) {
calcNodes <- modelSgetDependencies(nodes)

b 2 kinds of functions
run = function(vals = double(1)) { B

values(model, nodes) <<- vals

sumLogProb <- calculate(model, calcNodes)

return(sumLogProb)

returnType(double()) _

)



NIMBLE: Programming With Models

objectiveFunction <- nimbleFunction (

setup = function(model, nodes) {
calcNodes <- modelSgetDependencies(nodes)

b

__ query model
structure ONCE.

—

run = function(vals = double(1)) {
values(model, nodes) <<- vals
sumLogProb <- calculate(model, calcNodes)
return(sumLogProb)
returnType(double())

)

NIMBLE: extensible software for

hierarchical models (r-nimble.org) 2



NIMBLE: Programming With Models

objectiveFunction <- nimbleFunction (

setup = function(model, nodes) {
calcNodes <- modelSgetDependencies(nodes)

})

—

run = function(vals = double(1)) {
values(model, nodes) <<- vals the actual
sumLogProb <- calculate(model, calcNodes) = algorithm
return(sumLogProb)
returnType(double())

}) —

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =



The NIMBLE compiler

Feature summary:

* R-like matrix algebra (using Eigen library)

* R-like indexing (e.g. X[1:5,])

* Use of model variables and nodes

 Model calculate (logProb) and simulate functions
* Sequential integer iteration

e jf-then-else, do-while

 Declare input & output types only

* Access to much of Rmath.h (e.g. distributions)
* Automatic R interface / wrapper

* Many improvements / extensions planned




How an Algorithm is Processed in NIMBLE

DSL code within
nimbleFunction()

Parse in R

7
Parse tree
of code

Process to a
Reference Class
in R
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g++/llvm/etc.
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DLL in R TMPDIR

Generation of R
wrapper functions
that use .Call

v

Access via wrappers
from R
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Programmer experience: Random walk updater

sampler_myRW <- nimbleFunction(contains = sampler_BASE,

setup = function(model, mvSaved, targetNode, scale) {
calcNodes <- modelSgetDependencies(targetNode)

b

run = function() {
model_lp_initial <- getLogProb(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale)
model[[targetNode]] <<- proposal
model_Ip_proposed <- calculate(model, calcNodes)
log_ MH_ratio <- model_Ip_proposed - model_Ip _initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE

if(jump) {
copy(from = model, to = mvSaved, row = 1, nodes = calcNodes, logProb = TRUE)
} else copy(from = mvSaved, to = model, row = 1, nodes = calcNodes, logProb = TRUE)

)



NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm specification

NIMBLE programming language within R = R/C++
algorithm object

3. Algorithm library

MCMC, Particle Filter/Sequential MC, MCEM, etc.

NIMBLE: extensible software for
hierarchical models (r-nimble.org)
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NIMBLE in Action: the Litters Example

Beta-binomial GLMM for clustered binary response data
Survival in two sets of 16 litters of pigs

littersModelCode <- nimbleCode({ \ N..
for(j in 1:2) { 1)
for(l'in 1:16) {
rfi, j1 ~ dbin(p[i, j], n[i, j1);
pli, j1~ dbeta(alj], b[jl); m

}
mulj] <- a[jl/(a[j] + b[jl);
thetal[j] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001); Group j

Litter i

)

Challenges of the toy example:

* BUGS manual: “The estimates, particularly a,, a, suffer from extremely poor
convergence, limited agreement with m.l.e.”s and considerable prior sensitivity. This
appears to be due primarily to the parameterisation in terms of the highly related a
and b, whereas direct sampling of mu; and theta; would be strongly preferable.”

e But that’s not all that’s going on. Consider the dependence between the p’s and
their a;, b, hyperparameters.

* And perhaps we want to do something other than MCMC.



Default MCMC: Gibbs + Metropolis

> littersMCMCspec <- configureMCMC(littersModel, list(adaptinterval = 100))
> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_cpp <- compileNIMBLE(littersModel, project = littersModel)

> littersMCMC_cppSrun(10000)
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Blocked MCMC: Gibbs + Blocked Metropolis

> littersMCMCspec?2 <- configureMCMC(littersModel, list(adaptinterval = 100))

> littersMCMCspec2SaddSampler(c(‘a[1]’, ‘b[1]’), ‘RW_block’, list(adaptinterval = 100)
> littersMCMCspec2SaddSampler(c(‘a[2]’, ‘b[2]’), ‘RW_block’, list(adaptinterval = 100)
> littersMCMC2 <- buildMCMC(littersMCMCspec2)

> littersMCMC2_cpp <- compileNIMBLE(littersMCMC2, project = littersModel)

> littersMCMC2_cppSrun(10000)

NIMBLE: extensible software for 30
hierarchical models (r-nimble.org)



o
o | -]
o
) ©
= o
sE- 8-
o<
(U — —
=S
(U -]
28 8 |
C - Al
S W MM
o o
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
0 500 1500 2500 0 500 1500 2500 0 500 1500 2500 0 500 1500 2500
o
o | -]
o
©
] o
S 37
o=
%
< _
So
o8 o
(aV] o 4
] (aV]
o o
[ [

T T | | | | T T | | | | T T | | | T T | | |
0 500 1500 2500 0 500 1500 2500 0 500 1500 2500 0 500 1500 2500



Blocked MCMC: Gibbs + Cross-level Updaters

* Cross-level dependence is a key barrier in this and many other models.
* We wrote a new “cross-level” updater function using the NIMBLE DSL.
* Blocked Metropolis random walk on a set of hyperparameters with
conditional Gibbs updates on dependent nodes (provided they are in
a conjugate relationship).
e Equivalent to (analytically) integrating the dependent (latent) nodes
out of the model.

> littersMCMCspec3 <- configureMCMC(littersModel, adaptinterval = 100)

> topNodesl <- c('a[1]’, 'b[1]')

> littersMCMCspec3SaddSampler(topNodes1, ‘crossLevel’, list(adaptinterval = 100)
> topNodes?2 <- c('a[2]’, 'b[2]')

> littersMCMCspec3SaddSampler(topNodes2, ‘crossLevel’, list(adaptinterval = 100)
> littersMCMC3 <- buildMCMC(littersMCMCspec3)

> littersMCMC3_cpp <- compileNIMBLE(littersMCMC3, project = littersModel)

> littersMCMC3_cppSrun(10000)

NIMBLE: extensible software for 37
hierarchical models (r-nimble.org)
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Litters MCMC: BUGS and JAGS

Customized sampling possible in NIMBLE greatly improves

performance.
BUGS gives similar performance to the default NIMBLE MCMC

* Be careful —values of Ssim.list and Ssims.matrix in R2ZWinBUGS
output are randomly permuted
* Mixing for a2 and b2 modestly better than default NIMBLE

MCMC
JAGS slice sampler gives similar performance as BUGS, but fails for

some starting values with this (troublesome) parameterization
NIMBLE provides user control and transparency.

* NIMBLE is faster than JAGS on this example (if one ignores the
compilation time), though not always.

* Note: we're not out to build the best MCMC but rather a
flexible framework for algorithms — we’d love to have someone
else build a better default MCMC and distribute for use in our
system.



Stepping outside the MCMC box:
maximum likelihood/empirical Bayes via MCEM

> littersMCEM  <- buildMCEM(littersModel, latentNodes = 'p')
> littersMCEM(maxit = 500, m1 = 500, m2 = 5000)

* Gives estimates consistent with direct ML estimation (possible
in this simple model with conjugacy for ‘p’) to 2-3 digits

* VERY slow to converge, analogous to MCMC mixing issues

e Current implementation is basic; more sophisticated
treatments should help

Many algorithms are of a modular nature/combine other algorithms, e.g.
e particle MCMC

* normalizing constant algorithms

* many, many others in the literature in the last 15 years




Status of NIMBLE and Next Steps

First release was June 2014 with regular releases since.
Lots to do:

Sequential MC methods in next release (particle filter, ensemble
Kalman filter, particle MCMC)

Improve the user interface and speed up compilation
Allow indices of vectors to be random (e.g., mixture models)
Refinement/extension of the DSL for algorithms

Additional algorithms written in NIMBLE DSL (e.g., normalizing
constant calculation, Laplace approximations)

Advanced features (e.g., auto. differentiation, paralleliz’n)

Interested?

Announcements: nimble-announce Google site
User support/discussion: nimble-users Google site
Write an algorithm using NIMBLE!

Help with development of NIMBLE: email
nimble.stats@gmail.com or see github.com/nimble-dev




PalEON Project

www3.nd.edu/~paleolab/paleonproject

Goal: Improve the predictive capacity of terrestrial ecosystem models

Friedlingstein et al. 2006 J. Climate
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Critical issue: model parameterization and representation of decadal- to

centennial-scale processes are poorly constrained by data

Approach: use historical and fossil data to estimate past vegetation and climate

and use this information for model initialization, assessment, and improvement

NIMBLE: extensible software for
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PalEON Statistical Applications

Estimate spatially-varying composition and
biomass of tree species from count and zero-
inflated size data in year 1850

Estimate temporal variations in temperature
and precipitation over 2000 years from tree
rings and lake/bog records

Estimate tree composition spatially over 2000
vears from fossil pollen in lake sediment cores

Estimate biomass over time at a site from
fossil pollen in lake sediment cores



Fossil Pollen Data

Berry Pond, W Massachusetts
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Inferring Biomass from Pollen

e Calibration with multiple spatial locations:
— “Regress” multinomial counts on biomass

— For each taxon, have proportion of the taxon be a
smooth function of biomass using splines and Dirichlet
parameters:

* a,=exp(Z(b)B,)
— Estimate spline coefficients for each taxon
* Predict biomass over time at one location:
— State space model for biomass over time
— Fixed spline coefficients from calibration

— Inverse problem (just Bayesian inference)
* o, =exp(Z(b,)B,)



Relating biomass to composition

Using multiple sites (i = 1,...,n) with measured pollen
composition (y,) for k=1,...,K taxa and known local biomass
(b,), we regress the counts on biomass:

i, = exp(Z(b;) ' Br)
p; ~ Dirich(ay .)

y; ~ Multinom(p; )

* This uses b-splines to relate proportional abundance of a
taxon to biomass.

* Estimate the B, parameters (basis coefficients) for each taxon,
k=1,...,K.



Prediction Model
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Prediction Model

for(tin 1:nTimes) o
Y[t, 1:nTaxa] ~ ddirchmulti(alpha[t, 1:nTaxa], n[tﬂ> pollen likelihood
for (k in 1:nTaxa) n
for(tin 1:nTimes)
alphalt, k] <- exp(zb[t, 1:nKnots] %*% beta[1:nKnots, k]) |__ latent
predictor
for(tin 1:nTimes)
Zb[t, 1:nKnots] <- bspline(b[t], knots[1:w])

—_—

for(tin 2:nTimes) } biomass evolution
b[t] ~ dlInorm(log(b[t-1]), sdlog = sigma)

sigma ~ dunif(0, 10) # Gelman (2006) o eroriore
b[1] ~ dunif(0, 400) yperp

NIMBLE: extensible software for
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Results at one site

Calibration sites and prediction site (red)
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o
o —
o _]
(o0}

s o _|

© (o)

5

s 3 -
o _|
Al
o —

I I I I I I
-8000 -6000 —-4000 -2000 0 2000

year



How Can NIMBLE Help?

More flexible model specification
— Dirichlet-multinomial
— b-spline construction

User control over MCMC specification

Alternative algorithms, such as particle filter,
particle MCMC

Provide algorithms for model comparison and
model criticism

Transparency when an algorithm fails
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