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Petrochemical exposure in Kaohsiung, Taiwan
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Possible approaches for health analysis

• Estimate exposure and use as covariate in health model

• Use distance to exposure source as covariate

• Explicitly include space as a covariate

– Map of risk - exploratory
– Account for spatially-related unmeasured confounders
– Test for spatial effect
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Outline

• Motivating example

• Generalized additive model and generalized mixed model ap-
proaches

• Difficulties in fitting regression for non-normal outcomes with 2-d
smooth terms

• Parameterizations and fitting methods

• Simulations

– binary responses
– Poisson responses

• Revisit the example

• Goals for computational environmetrics
5



Goals for Computational Environmetrics

• reproducibility and ease of implementation, particularly for
Bayesian methods

• modularity

• comparison and evaluation of models and fitting methods

6



GAM and GLMM frameworks

• basic model

Yi ∼ Ber(p(xi, si))

logit(p(xi, si)) = xi
Tβ + gθ(si)

• basic spatial model for gs
θ = (gθ(s1), . . . , gθ(sn))

– GAM: gθ(·) is a two-dimensional smooth term

∗ basis representation, gs
θ = Zu

∗ Gaussian process representation:
g(·) ∼ GP(µ(·), Cθ(·, ·)) ⇒ gs

θ ∼ N(µ, Cθ)

– GLMM: gθ(si) = zi
Tu

∗ correlated random effects, u ∼ N(0,Σ)

7



Difficulties: speed and mixing

• Gaussian responses: closed form marginal likelihood
– estimate β, θ

• non-Gaussian: no closed form ⇒ high dimensional estimation
– estimate β, θ,u

• Challenges:

– Classical mixed model: how approximate integral over random
effects?

– Bayesian methods: how perform large matrix calculations and
avoid poor mixing?
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Fitting approaches

• penalized likelihood, l(y;β, gs
θ)− λJ(u)

– fit by iterative weighted least squares

• Bayesian model for (β, θ,u)

– fit by MCMC
– implicit Bayesian penalty on complex spatial functions

data space
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Goals for implementations

• fast computations, avoiding large matrix calculations

• methods that scale reasonably with n

• reasonable fitting of simple risk surfaces we expect to model

• ease of implementation for applied work

10



Models and fitting methods considered

• penalized likelihood based on mixed model with REML smoothing
(Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]

• penalized likelihood with GCV smoothing (Wood, 2001, 2003,
2004) [PL-GCV]

• Bayesian geoadditive model-style radial basis functions fit by
MCMC (Zhao and Wand 2004) [B-Geo]

• Bayesian spectral basis representation fit by MCMC using the FFT
(Wikle 2002; Paciorek and Ryan, in prep.) [B-SB]

• Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

11



Penalized likelihood using GLMM framework with
REML [PL-PQL]

• gs = Zu, Z = ΨnkΩ
−1

2
kk , u ∼ N(0, σ2

u) - variance component pro-
vides complexity penalty

• Ω contains pairwise spatial covariances between k knot locations
and Ψ between n data locations and k knot locations

• potential covariance functions:

– thin plate spline generalized covariance function, C(τ) = τ2 log τ

– Matérn correlation function, R(τ) = 1
Γ(ν)2ν−1

(
2
√

ντ
ρ

)
Kν

(
2
√

ντ
ρ

)
,

with ρ and ν fixed

• computationally efficient approximation of a Gaussian process rep-
resentation for gs

• PQL approach - IWLS fitting of (β,u) with REML estimation of σ2
u

within the iterations using MM software
12



GLMM basis functions

• radial basis functions centered at the knots

• 4 of 64 functions displayed:
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Penalized likelihood using GCV [PL-GCV]

• thin plate spline basis for g(·)

• truncated eigendecomposition of basis matrix increases computa-
tional efficiency

• IWLS fitting of (β,u) with GCV estimation of penalty

• easy implementation using the R mgcv library – gam()
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Bayesian geoadditive model [B-Geo]

• Bayesian version of GLMM framework already described

– gs = Zu, Z = ΨnkΩ
−1

2
kk , u ∼ N(0, σ2

u)
– natural Bayesian complexity penalty through prior on u

• thin plate spline covariance or Matérn correlation basis construction
of Ψ and Ω

• MCMC implementation - ensuring mixing is not simple

– Metropolis-Hastings for u using conditional posterior mean and
variance based on linearized observations

– joint proposals for σ2
u and u to ensure that u remains compatible

with its variance component
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Bayesian spectral basis function model [B-SB]

• computationally efficient basis function construction

• g# = Zu, gs = σPg# - piecewise constant gridded surface on k by
k grid

• Z is the Fourier (spectral) basis and Zu is the inverse FFT

• Zu is approximately a Gaussian process (GP) when...

– spectral density, πθ(·), of GP covariance function defines V(u)
– u ∼ N(0, diag(πθ(ω))) for Fourier frequencies, ω

16



Bayesian spectral basis functions

ω2 = 0 ω2 = 1 ω2 = 2 ω2 = 3

ω1 = 0

ω1 = 1

ω1 = 2

ω1 = 3
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Comparison with usual GP specification

• usual GP model: gs ∼ N(µ, Cθ)

– O(n3) fitting: |Cθ| and C−1
θ g

• spectral basis uses FFT

– O(k2) log(k2)
– additional observations are essentially free for a fixed grid
– fast computation and prediction of surface given coefficients
– a priori independent coefficients give fast computation of prior

and help with mixing
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Bayesian neural network [B-NN]

• multilayer perceptron with one hidden layer gives basis representa-
tion:

– g(si) =
∑

k tanh(φk
Tsi)uk

• position and orientation of basis functions change with φk

• implemented with software of R. Neal; somewhat complicated pro-
posal scheme
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Simulated datasets

• 3 case-control scenarios: n0 = 1, 000; n1 = 200; ntest = 2500 on 50 by 50 grid

• 1 cohort scenario: n = 10, 000; ntest = 2500 on 50 by 50 grid
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Assessment on 50 simulated datasets
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Mixing and speed of Bayesian methods

speed
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trace
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Example revisited - assessment

Summed test deviance
over 10-fold C-V sets

leukemia brain cancer

PL-GCV 590.1 529.8

PL-PQL 585.6 529.5

B-Geo 583.3 525.7

B-SB 582.1 525.1

null 581.6 525.5
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Simulated count data

• n = 225, ntest = 2500 on 50 by 50 grid
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Assessment on count simulations
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Methodology conclusions

• Effective process parameterization allows for faster Bayesian esti-
mation

– effective for spatial models with thousands of observations

• Natural Bayesian complexity penalty works well; other automatic
criteria appear to overfit

• R code for spectral basis model to ease implementation

• Power is an issue with binary observations

• Results hold for count data
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Suggestions for computational environmetrics

• reproducibility

– requires code and detailed description (supplemental mate-
rial/web)

– standard computing environment (R) helps
– enabling reproducible MCMC (beyond BUGS)

- class structures, templates, and proposal functions for R

• modularity

– spectral basis as modular component in hierarchical models

• comparison of methods/models

– rare
– difficult without reproducibility, particularly with Bayesian meth-

ods
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Future methodological work

• Importance of basis functions vs. speed/mixing in MCMC vs.
penalty estimation method in determining fitting success

– Why don’t automatic criteria for penalized likelihood work as
well?

– Importance of fitting both variance and spatial range parame-
ters - small-sample results (consider effective basis functions) vs.
asymptotics (Zhang, 2004)

• Simple approaches for testing necessity of spatial term

• Other process parameterizations allowing fast Bayesian estimation:

– Simple prior structures for wavelet basis coefficient (co)variances?
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