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Petrochemical exposure in Kaohsiung, Taiwan
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Petrochemical exposure in Kaohsiung, Taiwan
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Possible approaches for health analysis

e Estimate exposure and use as covariate in health model
e Use distance to exposure source as covariate

e EXxplicitly include space as a covariate

— Map of risk - exploratory
— Account for spatially-related unmeasured confounders

— Test for spatial effect



Outline

Motivating example

Generalized additive model and generalized mixed model ap-
proaches

Difficulties in fitting regression for non-normal outcomes with 2-d
smooth terms

Parameterizations and fitting methods

Simulations

— binary responses
— Poisson responses

Revisit the example

Goals for computational environmetrics



Goals for Computational Environmetrics

e reproducibility and ease of implementation, particularly for
Bayesian methods

e modularity

e comparison and evaluation of models and fitting methods



GAM and GLMM frameworks

basic model

Y; ~ Ber(p(x,s;))
logit(p(x;, 8;)) = miTﬁJrge(Si)

basic spatial model for g5 = (go(s1), ..., 90(5n))

— GAM: gy(-) is a two-dimensional smooth term

+ basis representation, g; = Zu

x (Gaussian process representation:

— GLMM: ge(Si) = Z,,;T’u,
x correlated random effects, u ~ N (0, X)



Difficulties: speed and mixing

Gaussian responses: closed form marginal likelihood
— estimate 3,0

non-Gaussian: no closed form =- high dimensional estimation
— estimate 3,0, u

Challenges:

— Classical mixed model: how approximate integral over random
effects?

— Bayesian methods: how perform large matrix calculations and
avoid poor mixing?
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Fitting approaches

e penalized likelihood, I(y; 3,g;) — A\J(u)

— fit by iterative weighted least squares

e Bayesian model for (3,0, u)

— fit by MCMC
— implicit Bayesian penalty on complex spatial functions

P(Y|M1)

marg. lik. (prior predictive)

P(Y|M2)

data space



Goals for implementations

fast computations, avoiding large matrix calculations
methods that scale reasonably with n
reasonable fitting of simple risk surfaces we expect to model

ease of implementation for applied work
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Models and fitting methods considered

penalized likelihood based on mixed model with REML smoothing
(Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]

penalized likelihood with GCV smoothing (Wood, 2001, 2003,
2004) [PL-GCV]

Bayesian geoadditive model-style radial basis functions fit by
MCMC (Zhao and Wand 2004) [B-Geo0]

Bayesian spectral basis representation fit by MCMC using the FFT
(Wikle 2002; Paciorek and Ryan, in prep.) [B-SB]

Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

11



Penalized likelihood using GLMM framework with
REML [PL-PQL]

1
g° = Zu, Z = ¥,;,Q,.;%, u ~ N(0,02) - variance component pro-
vides complexity penalty

(2 contains pairwise spatial covariances between k knot locations
and ¥ between n data locations and & knot locations

potential covariance functions:

— thin plate spline generalized covariance function, C(7) = 72log 7
~ Matérn correlation function, R(7) = gy (QfT) K, (2 ”)
with p and v fixed

computationally efficient approximation of a Gaussian process rep-
resentation for g°

PQL approach - IWLS fitting of (3, w) with REML estimation of o2
within the iterations using MM software
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GLMM basis functions

e radial basis functions centered at the knots

e 4 of 64 functions displayed:
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Penalized likelihood using GCV [PL-GCV]

thin plate spline basis for g(-)

truncated eigendecomposition of basis matrix increases computa-

tional efficiency
IWLS fitting of (3, ) with GCV estimation of penalty

easy implementation using the R mgcv library — gam()

14



Bayesian geoadditive model [B-Geo0]

e Bayesian version of GLMM framework already described

_1
-~ g =Zu, Z =902 u~ N(0,02)
— natural Bayesian complexity penalty through prior on u

¢ thin plate spline covariance or Matérn correlation basis construction
of ¥ and 2

¢ MCMC implementation - ensuring mixing is not simple

— Metropolis-Hastings for w using conditional posterior mean and
variance based on linearized observations

— joint proposals for o2 and u to ensure that u remains compatible
with its variance component
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Bayesian spectral basis function model [B-SB]

computationally efficient basis function construction

g”" = Zu, g° = o Pg™ - piecewise constant gridded surface on k by
k grid

Z 1s the Fourier (spectral) basis and Zwu is the inverse FFT

Zu IS approximately a Gaussian process (GP) when...

— spectral density, my(-), of GP covariance function defines V(u)
— u ~ N(0,diag(my(w))) for Fourier frequencies, w
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Comparison with usual GP specification

e usual GP model: g° ~ N (u, Cy)
— O(n?) fitting: |Cy| and C; 'g

e spectral basis uses FFT

- O(k?)log(k?)

— additional observations are essentially free for a fixed grid

— fast computation and prediction of surface given coefficients

— a priori independent coefficients give fast computation of prior
and help with mixing
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Bayesian neural network [B-NN]

e Mmultilayer perceptron with one hidden layer gives basis representa-
tion:

— g(8i) =D tanh (s si)uy
e position and orientation of basis functions change with ¢

e iImplemented with software of R. Neal; somewhat complicated pro-
posal scheme

T T
1.0
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Simulated datasets

e 3 case-control scenarios: ng = 1, 000; n1 = 200; nest = 2500 on 50 by 50 grid

e 1 cohort scenario: n = 10, 000; nwst = 2500 on 50 by 50 grid
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Assessment on 50 simulated datasets
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Mixing and speed of Bayesian methods
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Example revisited - assessment

Summed test deviance
over 10-fold C-V sets
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Simulated count data

o n = 225, nwes = 2500 on 50 by 50 grid
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Assessment on count simulations
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Methodology conclusions

Effective process parameterization allows for faster Bayesian esti-

mation

— effective for spatial models with thousands of observations

Natural Bayesian complexity penalty works well; other automatic

criteria appear to overfit
R code for spectral basis model to ease implementation
Power is an issue with binary observations

Results hold for count data
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Suggestions for computational environmetrics

e reproducibility

— requires code and detailed description (supplemental mate-
rial/web)

— standard computing environment (R) helps

— enabling reproducible MCMC (beyond BUGS)
- class structures, templates, and proposal functions for R

e Mmodularity

— spectral basis as modular component in hierarchical models

e comparison of methods/models

— rare
— difficult without reproducibility, particularly with Bayesian meth-

ods

27



Future methodological work

e Importance of basis functions vs. speed/mixing in MCMC vs.
penalty estimation method in determining fitting success

— Why don’t automatic criteria for penalized likelihood work as

well?

— Importance of fitting both variance and spatial range parame-
ters - small-sample results (consider effective basis functions) vs.
asymptotics (Zhang, 2004)

e Simple approaches for testing necessity of spatial term

e Other process parameterizations allowing fast Bayesian estimation:

— Simple prior structures for wavelet basis coefficient (co)variances?
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