Accounting for space in regression models with binary outcomes: A Bayesian spectral basis approach outperforms other methods

Chris Paciorek

October 23, 2004

Department of Biostatistics

Harvard School of Public Health

www.biostat.harvard.edu/~paciorek

Petrochemical exposure in Kaohsiung, Taiwan

n = 495 n = 433

Petrochemical exposure in Kaohsiung, Taiwan

Petrochemical exposure in Kaohsiung, Taiwan

Possible approaches for health analysis

- Estimate exposure and use as covariate in health model
- Use distance to exposure source as covariate
- Explicitly include space as a covariate
 - Map of risk exploratory
 - Account for spatially-related unmeasured confounders
 - Test for spatial effect

Outline

- Motivating example
- Generalized additive model and generalized mixed model approaches
- Difficulties in fitting regression for non-normal outcomes with 2-d smooth terms
- Parameterizations and fitting methods
- Simulations
 - binary responses
 - Poisson responses
- Revisit the example
- Goals for computational environmetrics

Goals for Computational Environmetrics

- reproducibility and ease of implementation, particularly for Bayesian methods
- modularity
- comparison and evaluation of models and fitting methods

GAM and GLMM frameworks

basic model

$$Y_i \sim \text{Ber}(p(\boldsymbol{x}_i, \boldsymbol{s}_i))$$
$$\text{logit}(p(\boldsymbol{x}_i, \boldsymbol{s}_i)) = \boldsymbol{x}_i^T \boldsymbol{\beta} + g_{\boldsymbol{\theta}}(\boldsymbol{s}_i)$$

- basic spatial model for $\boldsymbol{g}_{\theta}^s = (g_{\theta}(\boldsymbol{s_1}), \dots, g_{\theta}(\boldsymbol{s_n}))$
 - GAM: $g_{\theta}(\cdot)$ is a two-dimensional smooth term
 - * basis representation, $oldsymbol{g}^s_{oldsymbol{ heta}} = Zoldsymbol{u}$
 - * Gaussian process representation: $g(\cdot) \sim \mathsf{GP}(\mu(\cdot), C_{\theta}(\cdot, \cdot)) \Rightarrow \boldsymbol{g}_{\theta}^{s} \sim N(\boldsymbol{\mu}, C_{\theta})$
 - GLMM: $g_{\theta}(\boldsymbol{s}_{i}) = \boldsymbol{z}_{i}^{T} \boldsymbol{u}$

* correlated random effects, $\boldsymbol{u} \sim N(\boldsymbol{0},\boldsymbol{\Sigma})$

Difficulties: speed and mixing

- Gaussian responses: closed form marginal likelihood estimate β, θ
- non-Gaussian: no closed form \Rightarrow high dimensional estimation – estimate β, θ, u
- Challenges:
 - Classical mixed model: how approximate integral over random effects?
 - Bayesian methods: how perform large matrix calculations and avoid poor mixing?

Fitting approaches

- penalized likelihood, $l(\boldsymbol{y}; \boldsymbol{\beta}, \boldsymbol{g}_{\theta}^{s}) \lambda J(\boldsymbol{u})$
 - fit by iterative weighted least squares
- Bayesian model for $(\boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{u})$
 - fit by MCMC
 - implicit Bayesian penalty on complex spatial functions

data space

Goals for implementations

- fast computations, avoiding large matrix calculations
- methods that scale reasonably with n
- reasonable fitting of simple risk surfaces we expect to model
- ease of implementation for applied work

Models and fitting methods considered

- penalized likelihood based on mixed model with REML smoothing (Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]
- penalized likelihood with GCV smoothing (Wood, 2001, 2003, 2004) [PL-GCV]
- Bayesian geoadditive model-style radial basis functions fit by MCMC (Zhao and Wand 2004) [B-Geo]
- Bayesian spectral basis representation fit by MCMC using the FFT (Wikle 2002; Paciorek and Ryan, in prep.) [B-SB]
- Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

Penalized likelihood using GLMM framework with REML [PL-PQL]

• $g^s = Z u$, $Z = \Psi_{nk} \Omega_{kk}^{-\frac{1}{2}}$, $u \sim N(0, \sigma_u^2)$ - variance component provides complexity penalty

- Ω contains pairwise spatial covariances between k knot locations and Ψ between n data locations and k knot locations
- potential covariance functions:
 - thin plate spline generalized covariance function, $C(\tau) = \tau^2 \log \tau$
 - Matérn correlation function, $R(\tau) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{2\sqrt{\nu}\tau}{\rho}\right) K_{\nu} \left(\frac{2\sqrt{\nu}\tau}{\rho}\right)$, with ρ and ν fixed
- computationally efficient approximation of a Gaussian process representation for g^s
- PQL approach IWLS fitting of (β, u) with REML estimation of σ_u^2 within the iterations using MM software

GLMM basis functions

- radial basis functions centered at the knots
- 4 of 64 functions displayed:

Penalized likelihood using GCV [PL-GCV]

- thin plate spline basis for $g(\cdot)$
- truncated eigendecomposition of basis matrix increases computational efficiency
- IWLS fitting of (β, u) with GCV estimation of penalty
- easy implementation using the R mgcv library gam()

Bayesian geoadditive model [B-Geo]

• Bayesian version of GLMM framework already described

-
$$\boldsymbol{g}^s = Z \boldsymbol{u}, Z = \Psi_{nk} \Omega_{kk}^{-\frac{1}{2}}, \, \boldsymbol{u} \sim N(0, \sigma_u^2)$$

- natural Bayesian complexity penalty through prior on \boldsymbol{u}
- thin plate spline covariance or Matérn correlation basis construction of Ψ and Ω
- MCMC implementation ensuring mixing is not simple
 - Metropolis-Hastings for u using conditional posterior mean and variance based on linearized observations
 - joint proposals for σ_u^2 and u to ensure that u remains compatible with its variance component

Bayesian spectral basis function model [B-SB]

- computationally efficient basis function construction
- $g^{\#} = Zu$, $g^s = \sigma Pg^{\#}$ piecewise constant gridded surface on k by k grid
- Z is the Fourier (spectral) basis and Zu is the inverse FFT
- Zu is approximately a Gaussian process (GP) when...
 - spectral density, $\pi_{\theta}(\cdot)$, of GP covariance function defines V($m{u})$
 - $\boldsymbol{u} \sim N(0, \operatorname{diag}(\pi_{\theta}(\boldsymbol{\omega})))$ for Fourier frequencies, $\boldsymbol{\omega}$

Bayesian spectral basis functions

Comparison with usual GP specification

• usual GP model: $\boldsymbol{g}^s \sim N(\boldsymbol{\mu}, C_{\theta})$

- $O(n^3)$ fitting: $|C_{\theta}|$ and $C_{\theta}^{-1}g$

- spectral basis uses FFT
 - $O(k^2)\log(k^2)$
 - additional observations are essentially free for a fixed grid
 - fast computation and prediction of surface given coefficients
 - a priori independent coefficients give fast computation of prior and help with mixing

Bayesian neural network [B-NN]

 multilayer perceptron with one hidden layer gives basis representation:

-
$$g(s_i) = \sum_k \tanh(\phi_k^T s_i) u_k$$

- position and orientation of basis functions change with ϕ_k
- implemented with software of R. Neal; somewhat complicated proposal scheme

Simulated datasets

- 3 case-control scenarios: $n_0 = 1,000$; $n_1 = 200$; $n_{\text{test}} = 2500$ on 50 by 50 grid
- 1 cohort scenario: n = 10,000; $n_{\text{test}} = 2500$ on 50 by 50 grid

Assessment on 50 simulated datasets

Mixing and speed of Bayesian methods

Example revisited - assessment

Simulated count data

Assessment on count simulations

Methodology conclusions

- Effective process parameterization allows for faster Bayesian estimation
 - effective for spatial models with thousands of observations
- Natural Bayesian complexity penalty works well; other automatic criteria appear to overfit
- R code for spectral basis model to ease implementation
- Power is an issue with binary observations
- Results hold for count data

Suggestions for computational environmetrics

• reproducibility

- requires code and detailed description (supplemental material/web)
- standard computing environment (R) helps
- enabling reproducible MCMC (beyond BUGS)
 - class structures, templates, and proposal functions for R
- modularity
 - spectral basis as modular component in hierarchical models
- comparison of methods/models
 - rare
 - difficult without reproducibility, particularly with Bayesian methods

Future methodological work

- Importance of basis functions vs. speed/mixing in MCMC vs. penalty estimation method in determining fitting success
 - Why don't automatic criteria for penalized likelihood work as well?
 - Importance of fitting both variance and spatial range parameters - small-sample results (consider effective basis functions) vs. asymptotics (Zhang, 2004)
- Simple approaches for testing necessity of spatial term
- Other process parameterizations allowing fast Bayesian estimation:
 - Simple prior structures for wavelet basis coefficient (co)variances?