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Statistical Extreme Value Analysis

Statistical extreme value theory

@ The Generalized Extreme Value (GEV) distribution:

F(x) = exp <_ [1 e <X - M)}l/&)

@ Location parameter p, scale parameter o, shape parameter &,
generally fit via maximum likelihood.

@ Unites the bounded Weibull distribution (£ <0 ),
exponential-tailed Gumbell distribution ({ = 0), and
heavy-tailed Frechet distribution (£ > 0)

@ Asymptotic theory says that the distribution of block maxima
(or minima) converges to the GEV distribution as the block
size goes to infinity.

@ By the quantiles of the GEV distribution, the MLE for the

1/p-year return level is: 2, = ji — % (1 — (—log(1 — p))*é)




Statistical Extreme Value Analysis

Example: Berkeley winter precipitation
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Statistical Extreme Value Analysis

Nonstationary extreme value analysis

Extremes may also vary by season, by time, and with covariates (in
particular teleconnections such as ENSO).
@ A basic strategy:

o Fit separate models by season
o Fit nonstationary models with respect to time and ENSO:

F(xt) = exp <_ [1 s (xt;tutﬂ —1/&)

@ One might have all three parameters vary with time and
ENSO (linearly, polynomially, or based on splines).

@ Analyses often find little evidence (based on likelihood ratio
tests) that £ (and even o) are varying with time, though & in
particular is hard to estimate even in a stationary model.

@ A basic model is linear in time (and possibly ENSO) in p only,
as a first-order estimate of the trend over time.
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Statistical Extreme Value Analysis

Peaks over threshold (POT) analysis

@ An alternative is to model all the exceedances over a high
threshold, ¢ (e.g., the 95%ile or 99%ile of all rainy days in the
data). Why?

e Don't 'waste’ extreme observations that are not the block

maximum

e Readily allow for missing data when data are missing for
reasons unrelated to weather

e For precipitation, not clear that block maxima are appropriate
in dry regions/seasons when there are few wet days
(asymptotic conditions may not be satisfied)

@ A disadvantage is requiring the raw daily data, whereas block
maxima can use data summaries/indices (e.g., HadEX2
available only as indices)
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Statistical Extreme Value Analysis

Point processing modeling

@ The point process model implements the peaks-over-threshold
approach by specifying the probability of the number of
exceedances (the intensity measure) and the likelihood of the
actual exceedances (the intensity function). The stationary

version is:
— -1/¢
trrin o oo )
N(A) e
1  —
I1 = [1 s <X “)]
i1 7 o

@ The parameters are equivalent to the GEV parameters and
can be used to compute return levels.
@ Asymptotics are with respect to the threshold getting larger.
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Statistical Extreme Value Analysis

Example: Berkeley winter precipitation
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Statistical Extreme Value Analysis

US extreme precipitation

GHCN 1950 to 2010 change in RV (cm); unsmoothed

black x's are locations where statistical fit is unstable

@ (1) estimated patterns are noisy because of statistical uncertainty and (2)
pointwise uncertainty is large.

@ We can mitigate these problems by borrowing strength spatially and (for climate
model output) by fitting to initial condition ensembles.
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Methodological improvements

Spatial extreme value analysis

@ Given the sparsity of data and the spatial structure of
climate/weather, an obvious goal is to do a spatial analysis of
multiple locations, borrowing strength to:

o Better estimate spatial patterns
e Reduce uncertainty

@ Standard spatial analyses have assumed spatially-correlated
parameters, but conditionally [ID observations.

e Hierarchical Bayesian approaches have been a common
approach: Cooley, Gelfand, Sang, Shaby, and others

e Computation is a big hurdle and MCMC performance can be
poor

@ Analysts often remove consecutive exceedances to reduce
temporal autocorrelation

@ Some recent work on models that allow for spatially-correlated
observations.
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Methodological improvements

Our perspective

@ Given the size of observation and climate model output
datasets and the increasing spatial resolution of models, a
hierarchical modeling strategy fit by MCMC is not practical
for most large-scale and production-mode climate analysis.

@ Our focus:

o Location-specific analysis (embarrassingly parallel)

e Basic models for temporal change and associations with
teleconnections (linear)

Stratify by season rather than modeling seasonality

e Assess uncertainty via bootstrapping to deal with temporal and
spatial structure

Development of parallel software
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Methodological improvements

Bootstrapping

o Advantages:

o Avoids asymptotic assumptions/approximations
e Embarrassingly parallel
e Rather than reducing temporal autocorrelation by choosing the
maximum daily precipitation within blocks of days or runs of
extreme precipitation, the bootstrap can directly account for
this:
@ Basic approach is to bootstrap in year-long blocks

@ Inclusion of teleconnections as covariates and stratifying by
season further reduce temporal autocorrelation

@ Disadvantages

o Computationally-intensive
o Optimization can fail for some of the bootstrap resamples;
unclear how to address this in a formal statistical fashion
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Methodological improvements

Spatial smoothing: Local likelihood

@ Ramesh & Davison (2000; JRSSB) suggest to use local
likelihood to smooth in time
@ Here we propose to use local likelihood to smooth in space,
using cross-validation of the log-predictive density to choose
the bandwidth
e Fit for each location, borrowing strength in a neighborhood
e Normal density smoothing kernel, truncated at 20 or 3¢ to
reduce computation
e Common threshold for analysis at each location based on
quantile of focal location
o Common parameter values, but one might consider locally
linear parameters
@ Bootstrap can again provide uncertainty estimates, accounting
for the spatial dependence by resampling the same blocks
(i.e., years) at each location
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Methodological improvements

Effects of spatial smoothing
Change in US DJF return levels over 1950 to 2010

GHCN DJF 2010-1950 change in return values
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: 3
2
1
0
-1
-2
-3
smoothed change in return values smoothed standard error
o 3 - 20
AT 2
7 15
1
W 0 F 10
e i
05
S I
-3 - 00

Extreme precipitation 13



Results

Analysis details

@ Data sources:

e US station-specific analyses of Global Historical Climatology
Network-Daily (GHCND), 1950-2010

o US gridded (1/8 deg.) observational data from Maurer et al.
(2002), with elevation correction, 1950-2010

o Global CCSM4, run #1 from the CMIP5 archive, 1950-2005
(more runs and models to be analyzed)

@ Details (analyses still in progress):

o Threshold: 95th percentile of daily precipitation greater than 1
mm, location-specific

o GHCND data fit using local likelihood with Gaussian kernels,
o = 25km, truncated at 50km

e Maurer and CCSM4 data fit by grid point without smoothing

e Bootstrap-based uncertainty
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Results

Climatology of US extreme precipitation
20-year return levels, 2010

GHCN (1950-2010) 20-yr RV (cm) in 2010; smoothed
A 2 son

RV (cm) in 2010; unsmoothed

@ The Maurer gridded product mostly retains the point-based features.
@ Summer precipitation in the eastern US is the exception.
@ Note the effect of the Appalachians in summer and fall.
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Results

Climatology: Extremes vs. Means

Maurer gridded (1950-2010) 20-yr RV (cm) in 2010; unsmoothed
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Results

CCSM4 climatology fidelity

20-year return levels, 2005/2010

GHCN (1950-2010) 20-yr RV (cm) in 2010; smoothed
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o . son
.y . . . .
o [ 2
i o o ol .
E : . % -l .
2 2 2 - 2
o o L o o

@ Patterns in CCSM4 are reasonable, but magnitude in wetter
areas, particularly in the summer, is far too low.
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Results

Trends in US extreme precipitation, 1950-2010

2010 return levels minus 1950 return levels

GHCN 1950-2010 change in RV (cm); smoothed

MAM A
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Results

Trends: Extremes vs. Means

Maurer gridded 1950-2010 change in RV (cm); unsmoothed
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Results

CCSM4 trends fidelity

2010/2005 return levels minus 1950 return levels

GHCN 1950-2010 change in RV (cm); smoothed
oF MAM A son
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Results

Association with ENSO

Effect of one-unit change in Nino3.4 on return levels

GHCN 1950-2010 change in RV (cm) per unit of Nino3.4; smoothed
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Blue indicates a positive association with El Nino conditions and
red a positive association with La Nina conditions.
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Results

CCSM4 ENSQO association fidelity

Effect of one-unit change in Nino3.4 on return levels

GHCN 1950-2010 change in RV (cm) per unit of Nino3.4; smoothed
DF MAM i
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Note the fidelity for winter, which is the season with the
robust estimates in the observational data.
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Comments and software development

Open questions

@ How should we display and assess joint uncertainty? Note the
small-scale, but 'significant’ patterns in many results

@ Is field significance at all useful given that it says nothing
about which patterns are robust?

@ Would the False Discovery Rate approach be helpful for
assessing the collection of z-scores, particularly given the
larger bootstrap standard errors?
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Comments and software development

R software development

@ In collaboration with Eric Gilleland (NCAR), | have built the
following capabilities either into the extRemes R package or as
add-on functionality in the /lex R package under development.

o Handling missing values in point process modeling (common in
observational data), assuming MAR missingness

e Fitting point process models given only the exceedances; this
greatly speeds computation

e Including delta-method-based uncertainty for return values and
differences in return values in nonstationary models

e Including block bootstrap capability

o Allowing local likelihood fitting
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Comments and software development

Parallel software deployment

@ In collaboration with Dave Pugmire at ORNL and Hari
Krishnan at LBNL, we are developing tools within the Vislt
parallel visualization software (developed at the national labs)
to use extreme value analysis for gridded climate data.

@ Goal is to allow analysis in Vislt (and also in the new
UV-CDAT software) by calling R functionality, with Vislt
handling parallel 1/0, initializing processes, collecting results,
and visualization and R handling the statistical model fitting.

@ Two core tools:

o Vislt operators for parallelized GEV and POT analysis with
linear time trends in location, scale, shape parameters, as
desired. Ensemble analysis is possible.

e General purpose Vislt capability to run Python and R scripts.
This will allow for general extreme value analyses using R,
including arbitrary covariates, spatial smoothing, etc.
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