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Themes

Intuition about residual correlation can be deceptive.

Scales of spatial correlation are critical.

Accounting for spatial correlation may help reduce bias from
confounding in some situations.
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Uncertainty and Correlated Residuals

Variance of regression estimates, Var(β̂):

naive OLS variance is incorrect
GLS is the minimum variance estimator:
β̂ = (XTΣ−1X )−1XTΣ−1y

lower variance than OLS with corrected variance estimate

Question: How does residual correlation affect variance?

Conventional wisdom: Correlated residuals reduce the effective
sample size, so their presence adds uncertainty.
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Uncertainty and Correlated Residuals (2)

Reality:

Correlated residuals offer an opportunity to improve precision
by systematically explaining a portion of the residual variability.
Equivalent models

GLS: Y ∼ N (Xβ, σ2
r R + τ2I )

GAM: Y ∼ N (Xβ + g , τ2I )

g ∼ N (0, σ2
r R)

Heuristic is that fitting either a GLS or GAM model allows one
to attribute residual variability to the spatial component of the
residual, reducing the unexplained variability in the model and
decreasing Var(β̂).
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Precision with Correlated Residuals

E(Var(β̂)−1) = E(XT
1 Σ−1X1) = tr(Σ−1σ2

uR(θu)) =
σ2

u
τ2 tr((I +

σ2
r

τ2 R(θr ))−1R(θu)).

Results depend on the scales of the correlation in X1 and the
residual.
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Key Question

We know that attributing variability to a spatial component in
the residual can reduce variance.

Can it alleviate bias from an unmeasured, but
spatially-correlated, confounder?

Potential mechanism: attribute variability from confounder to
the spatial residual (or to a spatial term in the mean).

Conventional Wisdom?

Accounting for spatial correlation in the residual can account
for a spatial confounding and reduce (eliminate?) bias.

Reality:

It depends on the spatial scales involved.
Dominici et al. (2004, JASA): control for spatial structure at
large scales to eliminate confounding at that scale.
Goal is to assess association based on nearby observations,
which share the same large-scale spatial effect.
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Thought Experiment

Suppose pollution varies smoothly in space. Also, suppose that
(unmeasured) SES varies smoothly in space.
If we analyze a health outcome as a function of pollution, the
residuals will be correlated because of SES.
There is a fundamental non-identifiability in the model

Yi = X (si )β + g(si ) + εi

which we could re-express as

Yi = g∗(si ) + εi .

That is, how do we separate the pollution effect from the spatial
effect (spatial confounder) if the pollution effect is just another form
of spatial effect.
Questions:

How does the model attribute variation between X (s)β and
g(s)?
What aspects of X (s) are used to estimate β?
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Scale Matters

A non-health example: how does elevation affect precipitation in the
central United States?
At large scale, precipitation increases with decreasing elevation as
topography slopes gently downwards from the Rockies to the
Mississippi River.

Elevation is not the causal effect.

At smaller scale, precipitation increases with increasing elevation.
A spatial model here can account for confounding from other
factors that vary smoothly west to east, and isolate the elevation
effect to the effect of elevation at small scales.

GLS: Y ∼ N (Xβ, σ2
r R + τ 2I )

GAM: Y ∼ N (Xβ + g , τ 2I )

In the GAM, roughness in g is penalized with a penalty parameter
estimated by an analog of generalized cross-validation.
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Association of Elevation and Precipitation
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Dominici et al. approach

Model

yt = βxt + g(t) + εt

xt = xc(t) + xu,t

The paper explores the effects of modeling the temporal
variability in g(t) with orthogonal basis functions.

Results:

If g(t) is modeled with sufficient basis functions to fully
capture the temporal variation in xc(t), then:

1 if xc(t) is smoother than g(t), β̂ is asymptotically unbiased.
2 if xc(t) is rougher than g(t), β̂ is unbiased.
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Building on the approach

Key insight: the spatial model should account for correlation
in the covariate, not in the outcome/residuals.

Unresolved issues:

What happens if the unconfounded portion of the covariate,
xu,t , is spatially correlated?

How do the relative spatial scales affect bias and precision?

What is the bias when one fits a standard GLS model or GAM
for the covariate, accounting for spatial correlation?
The model doesn’t have correlation between g(t) and xc(t).

Chris Paciorek Bias from spatial confounding 13
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A Simple Model

We can explore bias by starting with a simple generative
model:

yi = β1x1(si ) + β2x2(si ) + εi

Let x1(s) and x2(s) be Gaussian processes, with
Cor(x1(si ), x2(si )) = ρ.

If x2 is unmeasured, we arrive at the GLS model

yi = β1x1(si ) + ε∗i

Cov(ε∗) = Σ = σ2
r R(θr ) + τ2I

where σ2
r = β2

2Var(x2).

Chris Paciorek Bias from spatial confounding 14
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Bias in the simple model

E (Y |x1) = β1x1(s) + ε∗

Cov(Y |x1) = Cov(ε∗) = Σ = σ2
r R(θr ) + τ2I

Bias comes from fitting models under the assumption that ε∗ is
uncorrelated with x1.

In calculating E (Y |x1) and Cov(Y |x1) in the GLS model
above, we have used the marginal, P(X2) instead of the
conditional, P(X2|X1).

The GLS model and its GAM analog match what practicioners
do when they fit regressions with spatial structure.
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Known parameters, single scale

Suppose x1(s) and x2(s) share the same range of spatial
correlation, but may be scaled differently in magnitude,
namely, Cov(x1) = σ2

cR(θr ) and Cov(x2) = σ2
2R(θr ), then

E (β̂1|x1) = β1 + (xT
1 Σ−1x1)

−1xT
1 Σ−1E (x2|x1)β2

= β1 + ρ
σ2

σc
β2

because E (x2|x1) = ρσ2σcR(θr )σ
−2
c R(θr )

−1x1.

The resulting bias, ρσ2
σu

β
2
, is the same as if the covariates

were not spatially structured.

Heuristically, the model attributes variability from the
confounder to the covariate of interest.
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Known parameters, multi-scale

Let x1(s) = xc(s) + xu(s) with Cov(x1) = σ2
cR(θr ) + σ2

uR(θu).
Let Cov(x2) = σ2

2R(θr ) and Cor(xc(si ), x2(si )) = ρ.

E (β̂1|x1)

=β1 + (xT
1 Σ−1x1)−1xT

1 Σ−1E(x2|x1)β2

=β1 +
xT
1 Σ−1(I+

σ2
u

σ2
c

R(θu)R(θr )
−1)−1x1

(xT
1 Σ−1x1)

ρ σ2
σc

β2

=β1 + h(x1)ρ
σ2

σc
β2
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Unknown parameters

Simulation results indicate that bias when estimating parameters in
a GLS framework (or also in a GAM framework) is similar to that
with known parameters.
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Heuristics

Reducing bias requires the covariate of interest to have a
spatial scale at which it is unconfounded, and that scale must
be smaller than the scale at which confounding operates.

We would like the covariate to have as much variation at the
unconfounded scale and as little at the confounded scale as
possible.

Other results are straightforward and match the non-spatial
setting for confounding. We want:

the magnitude of variation in the confounder (or its effect on
the outcome) to be small.
the correlation between confounder and covariate to be small.
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Ongoing work

Analysis of precision and MSE

Simulations for non-linear settings

Effects of choosing incorrect parameter values to minimize bias

Using fixed df to model the residual correlation (a la Dominici
et al. 2004)

Areal data settings

Implications of measurement error in x1

Is there related work in spatial econometrics?

Regression discontinuity in spatial settings?

Chris Paciorek Bias from spatial confounding 20
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Areally-aggregated Data

Aggregated data in areal units such as zip codes, census tracts
and counties are often the finest resolution data available for
disease mapping analyses.

Spatial confounding may be an issue in spatial regression
models for aggregated data.

Conditional auto-regressive (CAR) models are often used;
these models smooth based on weighted averaging of
neighboring units.

Two key issues in areal models:

1 Aggregation smooths over fine-scale heterogeneity.
2 CAR models (by using local averaging) do not model

large-scale spatial patterns.

Both of these issues suggest that bias could be substantial in
CAR-type models based on the results presented here.
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Measurement Error

Classical error:

Preliminary work suggests that under classical error, the model
attributes variability in the outcome to the spatial residual, not
to the error-contaminated covariate of interest.
Model attenuates the effect estimate because the spatial
residual is a well-measured surrogate that can stand in for the
covariate.

Berkson error/regression calibration:

Gryparis, Paciorek, and Coull (under revision) argue that
spatial smoothing models are a form of regression calibration
that induce Berkson type error when using predictions
Under Berkson error, we should be in the framework discussed
here, except that smoothing done to make predictions will
reduce fine-scale heterogeneity, decreasing our ability to reduce
bias.
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