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ABSTRACT

The analysis of climatological data often involves statistical significance testing at many locations. While the
field significance approach determines if a field as a whole is significant, a multiple testing procedure determines
which particular tests are significant. Many such procedures are available, most of which control, for every test,
the probability of detecting significance that does not really exist. The aim of this paper is to introduce the novel
‘‘false discovery rate’’ approach, which controls the false rejections in a more meaningful way. Specifically, it
controls a priori the expected proportion of falsely rejected tests out of all rejected tests; additionally, the test
results are more easily interpretable. The paper also investigates the best way to apply a false discovery rate
(FDR) approach to spatially correlated data, which are common in climatology. The most straightforward method
for controlling the FDR makes an assumption of independence between tests, while other FDR-controlling
methods make less stringent assumptions. In a simulation study involving data with correlation structure similar
to that of a real climatological dataset, the simple FDR method does control the proportion of falsely rejected
hypotheses despite the violation of assumptions, while a more complicated method involves more computation
with little gain in detecting alternative hypotheses. A very general method that makes no assumptions controls
the proportion of falsely rejected hypotheses but at the cost of detecting few alternative hypotheses. Despite its
unrealistic assumption, based on the simulation results, the authors suggest the use of the straightforward FDR-
controlling method and provide a simple modification that increases the power to detect alternative hypotheses.

1. Introduction

Climate research often involves an assessment of the
statistical significance of a quantity, such as an observed
correlation or trend. If the quantity is measured at mul-
tiple locations, this requires testing many hypotheses
simultaneously. Such a situation can arise when cor-
relating an atmospheric field with a nonspatial quantity,
such as a teleconnection pattern, or when correlating
two atmospheric fields. It can also arise when evaluating
time trends or model performance at many locations.
The usual setting for such multiple testing in climato-
logical studies involves quantities measured over time,
with time providing the replication necessary for cal-
culating the chosen test statistic, such as correlation,
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trend, or model fit, at each of the locations. This paper
addresses the problem of evaluating statistical signifi-
cance when many hypothesis tests are performed si-
multaneously.

A single test performed at significance level a has
probability a of rejecting the null hypothesis when it is
in fact true. Hence if n such tests are performed when
all n null hypotheses are true (the collective null hy-
pothesis), then the average number of tests for which
the null is falsely rejected is na. For example, with a
5 5%, testing for a trend at 1000 locations at which no
change really occurred would yield 50 significant lo-
cations on average; this is unacceptably high.

Climatologists have long recognized the problem of
accounting for multiple tests; as early as 1914, when
conducting multiple tests, Walker adjusted the signifi-
cance level used for rejection (Katz 2002). More re-
cently, climatologists have taken the alternative ap-
proach of testing for field significance. In a seminal
paper, Livezey and Chen (1983) proposed a method that
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FIG. 1. Map of locations with significant trends in the temperature
variance index, 1949–99, in the area 208–708N based on three mul-
tiple testing procedures: a 5 5% (light 1 medium 1 dark gray),
FDR (medium 1 dark gray), and Bonferroni (dark gray).

determines if a field of individual, or local, hypothesis
tests are collectively significant. This approach is pop-
ular in the climatological literature, with over 300 ci-
tations of Livezey and Chen (1983) since its publication.
Statistical climatology texts cover the method as the
primary way to deal with multiple hypothesis tests
(Wilks 1995; von Storch and Zwiers 1999). The basic
approach relies on the fact that if the collective null
hypothesis holds, and if the p-values are independent,
they can be viewed as a sample from a binomial dis-
tribution with sample size n and probability of ‘‘suc-
cess’’ (correctly accepting the null), 1 2 a. Using prop-
erties of the binomial distribution, one can calculate the
probability p of observing as many or more significant
p-values as were actually observed. If p is less than a,
the observed field is said to be field, or globally, sig-
nificant at level p. If the p-values are not independent,
p can be obtained by Monte Carlo simulation. Wilks
(1997) discusses modifying the approach to make use
of the bootstrapped null distribution of quantities other
than the p-values for determining field significance. An-
other variant on the Livezey and Chen (1983) approach
is to find the number of effectively independent loca-
tions, also termed degrees of freedom, n*, to use in place
of the actual number, n, of locations in the binomial
approach.

Livezey and Chen (1983) illustrate the field signifi-
cance method on the correlation between the Southern
Oscillation index and the 700-mb geopotential height at
many locations over a 29-yr period. Subsequent re-
searchers have used the method or variants on a wide
variety of problems. The method screens out situations
in which apparent spatial effects, such as a coherent
area of positive correlations in one region, could plau-
sibly be accounted for by chance as a result of spatial
correlation in the observations used to calculate the
field. Researchers who find field significance then pro-
ceed to interpret the field.

We now present an example of a multiple testing
problem in climatology and give the results of several
multiple testing approaches to highlight the issues at
hand. Paciorek et al. (2002) analyze time trends of mul-
tiple indices of winter storm activity during 1949–99
to assess if activity has changed over 51 yr. For illus-
trative purpose here, we focus on one such index, the
variance of the bandpass-filtered daily mean temperature
at 500 hPa, which reflects the variability in temperature
at scales of 2.5–10 days, and acts as a measure of large-
scale atmospheric variability brought about in part by
the passage of extratropical cyclones. To test for a
change, Paciorek et al. (2002) use the fitted slopes from
linear regressions of the index against time (51 yr) at
each of n 5 3024 locations on a 2.58 by 2.58 latitude–
longitude grid in the Northern Hemisphere, 208–708N.

The method of Livezey and Chen (1983) detects field
significance, with p , 0.001, but gives no indication
about which particular locations are significant, even
though this is of crucial interest. For that, we must test

for a change at each location. Traditional methods typ-
ically declare the change to be significant if it exceeds
some multiple of its standard deviation s ; the most
commonly used threshold is 2s, which corresponds to
a probability of about a 5 5% of erroneously rejecting
a null hypothesis. An alternative is the recent false dis-
covery rate (FDR) procedure of Benjamini and Hoch-
berg (1995), which controls the proportion q of falsely
rejected null hypotheses relative to the total number of
rejected hypotheses.

Figure 1 shows the significant locations as determined
by testing at significance level a 5 5%, testing at a
more stringent Bonferroni-corrected a 5 n21 3 5% with
n 5 3024 (section 2b), and testing by the FDR procedure
with the false discovery rate set at q 5 5%. These three
procedures pick vastly different numbers of significant
locations—941, 19, and 338, respectively—and perhaps
the only reassuring (and not surprising, as we shall see
later) fact is that there appears to be an order: the Bon-
ferroni-significant locations are a subset of the FDR-
significant locations, which in turn are a subset of the
s-significant locations. Which result should we report?

The purpose of this paper is to introduce FDR pro-
cedures to members of the climatology community, who
are often faced with problems of multiple testing, and
to show the advantages of FDR compared to traditional
procedures.

The next three sections are fairly distinct. In section
2, we describe how the competing testing procedures
are performed and the different ways in which they
control the number of false detections. We argue that
FDR controls a more useful and tangible criterion than
do the classical methods. This is the most important
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message of this paper. However, the original FDR pro-
cedure of Benjamini and Hochberg (1995), which we
describe in section 2 and show the results of in Fig. 1,
makes independence assumptions that may be unreal-
istic for climate data. Section 3 introduces other FDR
procedures (Yekutieli and Benjamini 1999; Benjamini
and Yekutieli 2001) designed to handle dependent tests;
such tests arise often in climatology [in fact, Yekutieli
and Benjamini (1999) illustrate their procedure with a
climatological example], since observations at nearby
locations are likely to be spatially correlated. These new
FDR procedures control the number of false detections
in the same meaningful way as we describe in section
2, but we know of no simulation study that shows how
they actually perform when applied to correlated data.
We therefore conduct such a study, based on simulated
data consistent with climatological data. Our conclusion
is that the FDR procedure of Benjamini and Yekutieli
(2001) is too conservative to be useful, while the im-
provements of the procedure of Yekutieli and Benjamini
(1999) over the original procedure of Benjamini and
Hochberg (1995) are too minor to warrant the additional
computation required. Section 4 introduces recent re-
finements to the FDR procedure of Benjamini and Hoch-
berg (1995), and section 5 summarizes our findings.

2. Multiple testing procedures and their properties

Consider the general problem of detecting signifi-
cance, for example, of trends at many locations over
some area. The null hypothesis, H0, states that no change
occurred and is tested against the loosely specified al-
ternative hypothesis, HA, that ‘‘some’’ change (increase,
decrease, or either) occurred. Whereas the commonly
used test of Livezey and Chen (1983) determines if the
data contain evidence against H0 globally over the whole
area, here we are concerned with testing H0 versus HA

at a potentially large number, n, of locations in the area.
That is, we wish to make local determinations of sig-
nificance.

The first step is to choose a test statistic, T, a function
of the data whose value helps us decide if H0 should
be rejected or not. In our temperature variance index
example, T is the estimated regression slope of index
values against time, with evidence against H0 provided
by large values of | T | , since we are interested in de-
tecting either an increase or a decrease. The choice of
T is in itself an interesting problem, since some partic-
ular T may be better able to discriminate between H0

and HA; we will not debate this question here and instead
will assume that some suitable T has been identified for
the purpose of answering the question of scientific in-
terest.

Letting ti denote the observed value of T at location
i 5 1, . . . , n, and assuming that large values of | T |
provide evidence against H0, the corresponding p-values
are

p 5 Pr( | T | $ | t | | H true),i i 0 (1)

where ‘‘ | H0 true’’ means that (1) is calculated with
respect to the distribution of T under the assumption
that H0 is true. In plain words, (1) measures the prob-
ability that | T | could have a value greater than | ti |
when H0 is true. A high probability means that ti, the
value of T we observed, is perfectly ordinary when H0

is true. A low probability indicates that the observed ti

is very unusual when H0 is true, which means that either
we observed a rare event (a very unusual value of T),
or H0 is not true. Therefore, a small p-value, pi, provides
strong, although not foolproof evidence against H0; re-
jecting H0 could be the wrong decision. Both traditional
and FDR procedures reject H0 when pi is small, but they
differ in the way they control the number of erroneous
decisions that can be made, as described in section 2b.
We first describe how the various testing procedures are
performed.

a. Multiple testing methods

Before we perform any test, we must first choose, for
the traditional procedure, the nominal probability, a, of
erroneously rejecting any particular null hypothesis, and
for the FDR procedure, the nominal FDR, q, which is
the rate we are willing to allow of false rejections out
of all rejections. The adjective ‘‘nominal’’ conveys that
a and q are chosen a priori, before the tests are per-
formed. The probability a is commonly known as the
significance level, or the probability of a type I error,
although in the context of multiple testing, a could more
suitably be referred to as the false positive rate (FPR),
as argued in section 2b; henceforth, we refer to tradi-
tional procedures as FPR procedures. The choice of a
or q is subjective and should reflect our willingness to
make mistakes in order to have more power to detect
real changes (see section 2b). The most commonly used
value for both a and q is 5%.

A traditional FPR procedure rejects H0 at location i
if pi is smaller than a; the same threshold is applied to
all tests/locations. In contrast, the FDR procedure of
Benjamini and Hochberg (1995) rejects H0 at all loca-
tions i for which pi # pk, where

i
k 5 max i: p # q , (2)(i )5 6ni50, . . . , n

with p( i ) , i 5 1, . . . , n; the p-values (1) sorted in as-
cending order; and p(0) 5 0.

Figure 2 clarifies this seemingly complicated rule. It
displays the outcome of the two testing procedures on
a stylized example, with the particular choice of q 5 a
5 20%. The ordered p-values, p( i ) , are plotted against
i/n for i 5 1, . . . , n. Then the horizontal line at a and
the line with intercept zero and slope q are overlaid. All
p-values below the horizontal line are rejected by the
traditional FPR procedure, while the FDR procedure
rejects all p-values, in ascending order, up to the largest
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FIG. 2. Illustration of the traditional FPR and FDR procedures on
a stylized example, with q 5 a 5 20%. The ordered p-values, p(i),
are plotted against i/n, i 5 1, . . . , n, and are circled and crossed to
indicate that they are rejected by the FPR and FDR procedures, re-
spectively.

TABLE 1. Quantities relevant to traditional FPR and new FDR procedures. The information that is known is indicated in bold. FPP, FNP,
FDP, and FNDP indicate, respectively, the observed false positive, negative, discovery and nondiscovery proportions, and FPR, FNR, FDR,
FNDR indicate the corresponding expected proportions, which we refer to as rates; for example, E(FDP) 5 FDR.

TRUTH

Decision

Maintain H0 Reject H0 Row totals
Quantities relevant to

FPR procedures

H0 n 2 nFPH0

No. correctly maintained

nFP

No. of false positives

nH0

No. of true H0

FPP 5
nFP

nH0

FPR5 a

HA nFN

No. of false negatives

n 2 nFNHA

No. correctly rejected

nHA

No. of false H0

FNP 5
nFN

nHA

FNR 5 ??

Column totals naccept

No. of maintained H0

nreject

No. of rejected H0

n (# of tests)

Quantities relevant to FDR FNDP 5
nFN

naccept

FNDR # a
(see section 4)

FDP 5
nFP

nreject

FDR # q

p-value that lies below the (0, q) line, indicated on Fig.
2 by an arrow.

Figure 2 also shows that, although the FDR rejection
rule is complicated, effectively all p-values below a cer-
tain threshold are rejected, since the p-values are plotted
in ascending order. This yields two remarks. First, this
explains why the three sets of rejected null hypotheses
in Fig. 1 were nested subsets: the implicit FDR threshold
was between the significance levels of the two FPR
procedures, a 5 5% and the Bonferroni-corrected a 5
n21 3 5%.

Second, this suggests that the outcome of the FDR
procedure could have been obtained with a traditional
FPR procedure with some cleverly chosen a. So why
bother with an FDR testing procedure? The answer,
which we develop further in the next section, is that
FDR procedures control false rejections in a meaningful
way.

b. Controlling mistakes

When we reject or fail to reject a particular H0, we
may either make the correct decision or make one of
two mistakes: reject when H0 is in fact true or fail to
reject when H0 is in fact false. These mistakes are com-
monly referred to as false positive and false negative
detections and also as type I and type II errors. We
denote by nFP and nFN the numbers of such mistakes out
of the n tests (see Table 1). Since the truth is unknown,
we use testing procedures that control these errors. Both
FPR and FDR procedures control the number of false
positive detections nFP in different ways, but neither (nor
any testing procedure we know) controls the number of
false negative detections. It is easy to see why; once a
or q is chosen, the decisions about the hypotheses, as
carried out in Fig. 2, are determined; there is no room
left to control the number of false negatives.

For a traditional FPR procedure, the choice of a de-
termines the properties of the test; a is the probability
of rejecting any particular H0 by mistake, which means
that on average, a% of the n locations for which H0H0

is true will be found significant by mistake. We report
this in Table 1 as

FPP 5 n /n , FPR 5 E(FPP) 5 a,FP H0
(3)

where FPP is the observed false positive proportion,
and E stands for expectation. The FPP/FPR notation is
consistent with standard statistical terminology, where
the expectation of an observed ‘‘proportion’’ is usually
referred to as a ‘‘rate.’’ Equation (3) justifies our calling
a the FPR.

What (3) means is that the number nFP of false pos-
itives that a traditional FPR procedure allows is pro-
portional to the unknown number n of true null hy-H0

potheses. So, for example, if most or all locations have
n true, this test will yield a large number of falseH0

positive detections, as we will later illustrate in Fig. 3.
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FIG. 3. (a) FDR and (b) power of three testing procedures, as functions of the proportion of true
alternative hypotheses, a 5 n /n.HA

Moreover, because n is unknown, (3) does not helpH0

quantify nFP.
But one thing is clear: we probably made at least one

mistake. Indeed, when the tests are independent, we can
easily show that P(nFP $ 1) 5 1 2 (1 2 a) , which,nH0

for a 5 5% and n 5 2, 3, or 10, evaluates to 9.75%,H0

14.26%, or 40.13%, and increases rapidly with n . ThatH0

is, the probability of making at least one false positive
detection, P(nFP $ 1), often referred to as the family-
wise type I error, is very high.

Corrections that limit the number of false positives
have been suggested. The simplest is to use an arbitrarily
smaller a, say 0.5% or 0.01% instead of 5%. The less
ad hoc Bonferroni correction uses a 5 n21a9 for each
of the n tests, which guarantees that the family-wise
type I error, P(nFP $ 1), is smaller than some chosen
probability a9; in Fig. 1, we used a9 5 5% and n 5
3024. Although a smaller a reduces the probability of
rejecting null hypotheses by mistake, it also reduces the
probability of detecting real changes and thus increases
the number, nFN, of false negative errors. Choosing
which a to use is a trade-off; increasing the chance of
detecting real changes also increases the chance of mak-
ing false positive detections; the converse is also true.

The false discovery rate procedure of Benjamini and
Hochberg (1995) uses a different criterion; it controls
the proportion of false rejections out of all rejections,
which is referred to as the false discovery proportion
(FDP). Choice of a particular q in (2) guarantees that
the FDP is on average less than q, which we report in
Table 1 as

FDP 5 n /n , FDR 5 E(FDP) # q,FP reject (4)

where the FDR is the expectation of the corresponding
proportion. For example, setting q 5 5% guarantees
that, whatever the number, n , of true null hypothesesH0

and however many tests end up being rejected, at most
5% of the rejected tests are false detections on average.
But just as with traditional FPR procedures, choosing
q is a trade-off; lowering q to avoid false positive errors
decreases our chance of detecting real changes and nec-
essarily increases our chance of making false negative
errors. However, the FDR is a more tangible, meaning-
ful, and informative criterion of error control than the

FPR. Additionally, since we do know nreject in (4), we
can calculate an approximate1 upper bound for the ex-
pected number of false positive detections; that is

E(n ) # qn .FP reject

In the example of Paciorek et al. (2002; section 1),
the FDR procedure with q 5 5% yielded nreject 5 338
rejections out of n 5 3024 tests. If we choose to report
this result, we can also report that on average, there are
fewer than 338 3 5% 5 17 false positive detections,
nFP, out of the 338 rejected tests. On the other hand, if
we choose to report the results of one of the traditional
procedures, we cannot accompany them with estimates
of nFP nor of nFN.

Table 1 also reports measures of false negative de-
tections complementary to the FPR and the FDR. The
false negative rate (FNR) is the expected proportion of
tests we failed to reject out of the n tests that shouldHA

be rejected. The false nondiscovery rate (FNDR; Gen-
ovese and Wasserman 2004) is the expected proportion
of tests we should have rejected out of all the naccept tests
we did not reject. While the FNR cannot be controlled
a priori, it is often of concern to statisticians because it
relates to the ‘‘power’’ of a test, where power 5 1 2
FNR is the probability of rejecting a test for which H0

is false; the power measures the ability of a test to detect
real changes. The FNDR cannot be controlled a priori
either, but an upper bound can be estimated. We defer
this topic to section 4 to avoid detracting from the main
message here, which is that the FDR procedure controls
a meaningful measure of false positive detections.

c. Illustration

Consider a simplified version of the example in sec-
tion 1. Suppose that we are testing for a change at each
of n 5 1000 locations, based on regression slopes. We
assume that all locations are independent and defer to
section 3 for more realistic scenarios. Assume that the
n locations that have experienced no change over timeH0

1 The upper bound is only approximate because it assumes that
nreject is fixed, whereas it is a random variable, since it is determined
by the data.
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have estimated slopes normally distributed with true
mean m0 5 0 and standard deviation s0 5 1, while the
other n 5 n 2 n locations have mA 5 3 and sA 5H HA 0

3. We used s0 . 0 because, even if true slopes are zero
at the n locations with H0 true, slopes estimated fromH0

data will never be exactly zero.
We perform traditional FPR, Bonferroni, and FDR

procedures on such samples with a 5 5%, the Bonfer-
roni-corrected a 5 100021 3 5%, and q 5 5%, re-
spectively, and for each testing procedure and each sam-
ple, we record the false discovery proportion, FDP 5
nFP/nreject. Figure 3a shows the average of the FDP in
1000 samples, plotted against a 5 n /n, the proportionHA

of true alternative hypotheses; note that the y axis reads
‘‘FDR’’ rather than ‘‘average FDP’’ because, since we
used a large number of samples, the average FDP is
close to its expected value, FDR 5 E(FDP), the false
discovery rate.2 The plot clearly shows that the FDR of
the traditional procedure with a 5 5% is not controlled,
and worse, is uncomfortably high when a is below 25%.
In real situations, n is unknown, so we could un-HA

knowingly have a large proportion of the rejected hy-
potheses be false positive detections. On the other hand,
the FDR of the FDR procedure is always below the
nominal q 5 5%, so that, whatever the actual (unknown)
numbers of null and alternative hypotheses, n andH0

n , the procedure delivers on its promise that the pro-HA

portion of erroneous rejections is on average less than
q. Note that FDR falls further below q as a increases.
We explain why in section 4 and show how to calculate
a tighter upper bound for FDR.

Figure 3b shows the power of each procedure as func-
tions of a; in the notation of Table 1, power 5 (1 2
FNR), with FNR well approximated by the average over
the 1000 samples of the false negative proportion, FNP
5 nFN/n . We see that the FDR testing procedure isHA

consistently almost as powerful as the traditional FPR
procedure, while also successfully limiting the propor-
tion of false positive detections. The Bonferroni meth-
od’s consistently low FDR comes at the cost of low
power; such a test is often said to be conservative be-
cause it fails to reject many alternative hypotheses.

This simple example illustrates that the FDR proce-
dure combines the desirable features of the traditional
and Bonferroni procedures without their flaws; it has
high power while controlling the FDR to be below q,
for whichever q is chosen.

3. FDR procedures for correlated tests

In section 2, we made the argument that controlling
the FDR makes more sense than controlling the prob-
ability of type I errors (FPR); henceforth we focus only
on FDR procedures.

2 This result follows from the Weak Law of Large Numbers, which
states that as the simulation size goes to infinity, the sample mean
approaches the population mean (Casella and Berger 2002, p. 232).

In the example in section 1, we used the original FDR
procedure of Benjamini and Hochberg (1995) because
it is the simplest to apply. However, it makes the as-
sumption that all n tests are independent, which rarely
holds for climate data, for which measurements at near-
by locations are often positively correlated. The more
recent FDR procedures of Yekutieli and Benjamini
(1999) and Benjamini and Yekutieli (2001) are designed
to handle this complication. The various FDR proce-
dures differ in their assumptions, as described in section
3a, but under their respective assumptions, all guarantee
an FDR below the chosen value of q with probability
close to one.

Returning to our example in section 1, the three FDR
procedures with q 5 5% detect 338 (Benjamini and
Hochberg 1995), 376 (Yekutieli and Benjamini 1999),
and 36 (Benjamini and Yekutieli 2001) significant lo-
cations, respectively; the results are so different that we
felt compelled to investigate how the methods perform
when applied to simulated data. We know of no other
such study.

Section 3a describes briefly the new FDR procedures.
Section 3b explains how datasets consistent with climate
data were created, and section 3c reports the results of
our simulation study. To summarize in advance, we find
that the assumption-free FDR procedure of Benjamini
and Yekutieli (2001) is too conservative to be useful.
The procedure of Yekutieli and Benjamini (1999) is
reasonably successful but requires lengthy computa-
tions, while the original straightforward procedure of
Benjamini and Hochberg (1995) is fairly resistant to
violations of the independence assumption and thus still
gives good results for climate data.

a. FDR procedures and assumptions

Let S denote the set of p-values corresponding toH0

locations where H0 is true, and let S denote the set ofHA

all other p-values. Consider the following assumptions:

• Assumption 1: The elements of S are mutually in-H0

dependent.
• Assumption 2: The two sets S and S are indepen-H H0 A

dent from one another.

The original FDR procedure of Benjamini and Hoch-
berg (1995) makes both these assumptions, which are
clearly unreasonable for data that have spatial depen-
dence. The procedure of Yekutieli and Benjamini (1999)
makes assumption 2 only, and while it is likely to be
violated by climatological data, the violation is restrict-
ed to the spatial boundaries between the two sets SH0

and S . The FDR procedure of Benjamini and YekutieliHA

(2001) makes no assumptions at all, and therefore ap-
plies very generally. For simplicity of terminology, we
denote the procedures by FDR-Indep (Benjamini and
Hochberg 1995), FDR-Corr (Yekutieli and Benjamini
1999), and FDR-General (Benjamini and Yekutieli
2001).
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FIG. 4. Spatial autocorrelation for the simulated data types of sec-
tion 3b. Data type A: no spatial correlation, data type B: actual cor-
relation of data in section 1, and data type C: stronger correlation.
Also included are the spatial autocorrelation of station-based monthly
mean precipitation and sea level pressure from the GHCN.

To apply FDR-General is straightforward, we proceed
just as with FDR-Indep described in section 2 but re-
place q with q/( i21) in (2), where n is the totalnSi51

number of locations/tests. For Fig. 2, this translates into
replacing the line with slope q with a line with shallower
slope, q/( i21). Note that although the only differ-nSi51

ences between FDR-General and FDR-Indep are the
slope of the line used in Fig. 2 and the data assumptions
they require, both procedures make the same claim—
that FDR # q. However, for FDR-Indep, the claim is
strictly valid only if the tests satisfy assumptions 1 and 2.

FDR-Corr also makes a correction to FDR-Indep, al-
though it is much less immediately obvious. The prop-
erties of FDR-Indep rely on the fact that, when the lo-
cations are independent, the distribution of the p-values
for which H0 is true is uniform on [0, 1]. However, the
uniform distribution no longer holds when locations are
correlated, so that FDR control is no longer guaranteed.
FDR-Corr involves obtaining p-values from data sim-
ulated under the collective null hypothesis (all locations
have H0 true), in much the same way that data type A
is simulated in the next section, with the aim of cali-
brating q in the rejection rule (2), so that the actual FDR
is as close as possible to the original nominal FDR q.
This FDR method requires substantial computations,
based on a collective null hypothesis model estimated
from the data; the quality of the test is partly a function
of the simulation size (the larger the better) and of how
well the estimated collective null hypothesis model rep-
resents the hypothetical truth. An additional complica-
tion is that the calibration requires an estimate of the
number of rejected hypotheses that have H0 false, which
is not easily done. Because FDR-Corr requires simu-
lation and estimation steps, Yekutieli and Benjamini
(1999) could only show that FDR control, FDR # q,
is obtained with probability close to but less than one.

b. Simulated datasets

To assess the observed properties of the three FDR
procedures, we conduct a simulation study based on
three types of simulated datasets that were created spe-
cifically so that the strengths of their spatial correlations
span most types that arise in climatology; data type A
has no spatial dependence, data type B has spatial de-
pendence consistent with the climate data of section 1
(Paciorek et al. 2002), and data type C has stronger
spatial dependence. Before we describe how these da-
tasets were simulated, we illustrate the spatial depen-
dence structure in these data.

The correlation structure of a spatial field can be sum-
marized by the spatial autocorrelation function (Cressie
1993), which shows how rapidly the mean correlation
between pairs of locations decreases with the distance
between the locations. It is obtained by first plotting the
sample correlations between all possible pairs of loca-
tions against the distances between the locations, then
by smoothing the plot; Fig. 4 shows the resulting

smooths for the three simulated dataset types, as well
as for the two real climate datasets described below.

For data A, the autocorrelation drops immediately to
zero, consistent with the fact that data A have no spatial
correlation. It decays more slowly for data C than for
data B. For example, the correlation between two lo-
cations that are 1000 km apart is 0.5 for data B, whereas
it is still about 0.9 for data C; indeed the distance must
be greater than 2500 km for the correlation to be below
0.5 for data C. Also, locations that are more than 3500
km apart are almost completely independent for data B,
whereas the correlation is still as high as 0.2 for data C.

For comparison with our simulated data, Fig. 4 also
shows the spatial autocorrelation for two real climato-
logical datasets, the Global Historical Climatology Net-
work (GHCN) monthly mean station data from 1961–
90 for precipitation and sea level pressure. We see that
the spatial autocorrelations of the real data lie within
the range of the three simulated datasets. For clarity,
we show only the average correlation as a function of
distance; in all of the datasets, there are large positive
and negative individual correlations between specific
locations at all distances shown in the plot. As one
would expect, precipitation is less spatially correlated
than sea level pressure. We expect that few climatolog-
ical fields will be substantially more correlated than the
pressure field seen here, since pressure fields are typi-
cally quite smooth spatially. These comparisons suggest
that our simulated datasets cover the range of correlation
scales likely to be encountered in climatological data.

Our simulated datasets are all based on the data of
Paciorek et al. (2002), described in section 1, so that
they are consistent with actual climate data. First, we
detrend the time series at all n 5 3024 locations, with
fitted trends obtained from linear regressions of tem-
perature variance against time. We are thus left with a
spatially correlated set of n time series Yi(t), i 5 1, . . . ,
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TABLE 2. Summary of assumptions (defined in section 3a). A u indicates (left side of table) that a particular FDR procedure requires the
assumption under consideration or (right side) that a particular dataset satisfies it. An 3 indicates (left side) that a procedure does not require
the assumption or (right side) that a dataset violates it. An 33 indicates a more serious violation of the assumption. BH95: Benjamini and
Hochberg (1995), YB99: Yekutieli and Benjamini (1999), and BYO1: Benjamini and Yekutieli (2001).

FDR procedure

FDR-Indep
(BH95)

FDR-Corr
(YB99)

FDR-General
(BY01)

Data type: Correlation is

zero (A) ‘‘normal’’ (B) strong (C)

Assumption 1
Assumption 2

u
u

3
u

3
3

u
u

3
3

33
33

n that do not contain any signal; here, i denotes location
and t denotes time. Then, letting t* denote a vector of
51 yr sampled at random and with replacement from t
5 {1949, 1950, . . . , 1999}, Yi(t*), i 5 1, . . . , n is a
simulated dataset that contains no signal but that has
spatial correlation consistent with climate data; in sta-
tistical jargon, Yi(t*) is a bootstrap sample. Using the
same t* at all locations preserves the spatial correlation
structure of the original data, yielding datasets of type
B, while using different t*s destroys it, yielding datasets
of type A. To create a highly spatially correlated dataset
of type C, we start from a dataset of type B and induce
stronger spatial dependence by replacing Yi( ) at eacht*j
location i and year j by the average of Yk( ) for allt*j
locations k within 1913 km (0.3 radians) of i.

Note that so far we have shown how to create spatially
independent or correlated time series that contain no
signal. We then add nonzero linear trends bi at each of
n locations, giving simulated data,HA

X (t ) 5 Y (t*) 1 b t .i j i j i j

Correlated and uncorrelated datasets all use the same
signal b i; they differ only in their error structure Yi(t*).
The trends b i are chosen such that the signal-to-noise
ratio is held constant across these n locations; that is,HA

bi is chosen to explain a prespecified proportion of var-
iability (R2) in the regression of Xi(t) on t. Because the
magnitude of the random noise differs across locations,
had we added the same fixed trend bi 5 b at each of
the n locations, it would have been more difficult toHA

understand how the relative levels of signal and noise
affect the comparison of the multiple testing procedures.

Finally, we let n vary between 0% and 99% (0, 1,HA

10, 25, 50, 75, 90, 99) of the total number of locations,
n 5 3024, and use three R2 levels: 10%, 15%, and 20%.
Comparisons between the FDR procedures for each data
type at each value of n and R2 are based on resultsHA

averaged over 10 000 simulated datasets.

c. Properties of the FDR procedures—A simulation
study

We study the properties of the three FDR procedures
applied to our three types of simulated data. Table 2
summarizes the assumptions (specified in section 3a)

required by each FDR procedure and which types of
data satisfy them.

Our main results are summarized in Fig. 5, which has
the same structure as Fig. 3. Figure 5a plots, for the
three FDR procedures applied to the three simulated data
types, the average over 10 000 simulated samples of the
FDP versus a 5 n /n, the proportion of true alternativeHA

hypotheses; note that since the FDP is averaged over
so many samples, it is indeed very close to its expected
value, the FDR. Figure 5b shows the corresponding
power 5 (1 2 FNR) curves, although for the sake of
clarity, we plot only the curves for data type B. Figure
5 shows our results only for q 5 5% and signal-to-noise
ratio, R2 5 10%. Other values of q produced qualita-
tively the same results. Similarly, other values of R2

produced quantitatively the same results as in Fig. 5a
and qualitatively the same results as in Fig. 5b; not
surprisingly, the power increases as a function of the
signal-to-noise ratio R2 since true alternative hypotheses
become easier to detect.

We comment on the three FDR procedures in se-
quence. Because FDR-Indep requires assumptions 1 and
2 (see Table 2), it is only safely applicable to data type
A; indeed, our simulation results confirm the theoretical
claim in (4) that FDR # q for all a (Fig. 5a, dotted ‘‘I’’
curve). We had observed this already in Fig. 3. Strictly
speaking, FDR-Indep is inappropriate for datasets B and
C, since they are spatially correlated, but it is interesting
to assess its robustness to violations of the assumptions.
The dashed and solid ‘‘I’’ curves in Fig. 5a suggest that
the effect of applying FDR-Indep to increasingly cor-
related data is to further widen the discrepancy between
the FDR and q. However, FDR remains below q for all
a, so that even though FDR-Indep is theoretically in-
appropriate for correlated data, it still provides FDR
control as stated in (4).

One may feel that an FDR as low as possible is de-
sirable, since it reduces the number of false positive
detections. However, a low FDR invariably entails low
power, which produces larger numbers of false negative
detections, as seen in Figs. 5b and 3b. We reiterate at
this point that our aim is not to determine which pro-
cedure minimizes the FDR, since all testing procedures
make a trade-off between the numbers of false negative
and false positive detections, but rather which has FDR
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FIG. 5. (a) FDR and (b) power plotted against the proportion of alternative hypotheses, a 5 n /n, forHA

the three FDR testing procedures applied to the three data types described in section 3b. Data types A, B,
and C are distinguished with different plotting lines (dotted, dashed, and solid, respectively), and testing
procedures are marked by a distinguishing letter at the start of each curve: ‘‘C’’ for FDR-Corr, ‘‘I’’ for
FDR-Indep, and ‘‘G’’ for FDR-General. The horizontal line in (a) is at q 5 5%. For clarity, in (b) we show
only the power for data type B; results for data types A and C are similar.

as close as possible to, and below, q; that is, we want
predictable, tight FDR control. Therefore, FDR-Indep
provides FDR control as stated by (4) even for positively
spatially correlated data, although the tightness of the
control degrades as spatial correlation increases, which
in turn reduces the power of the test (not shown in Fig.
5 for clarity). In section 4, we explain how to improve
FDR-Indep.

FDR-General (Benjamini and Yekutieli 2001) re-
quires no assumptions, so that (4) should be satisfied
for all datasets. And indeed, the corresponding FDR
curves (‘‘G’’ curves in Fig. 5a) are below q for all a,
although they are too far below q to make FDR-General
practically useful; the excessively low FDR entails very
low power, as seen in Fig. 5b. We find that FDR-Indep
is practically more useful than FDR-General, even
though it requires assumptions that often are not met
by the data.

The last FDR procedure considered is FDR-Corr
(Yekutieli and Benjamini 1999), with simulation results
shown as the ‘‘C’’ curves in Fig. 5. Although it requires
fewer assumptions than FDR-Indep (Table 2), FDR-Corr
is only strictly applicable to data type A, with the guar-
antee that (4) holds with probability close to, but less
than, one. Note indeed that the FDR curve for data A
is below q, except for small a, which is consistent with

simulation results in Yekutieli and Benjamini (1999).
We also see that the effect of applying FDR-Corr to
increasingly correlated data is to increase the FDR, al-
though FDR control as stated in (4) still holds for most
a, even for very correlated data. This makes FDR-Corr
a competitor to FDR-Indep, especially since it has
slightly higher statistical power, as shown in Fig. 5b.
However, we feel that the computational effort it re-
quires is excessive. With n 5 3024 locations and a sim-
ulation size of 1000, which we consider a bare mini-
mum, FDR-Corr takes 97 CPU seconds to test the whole
field, compared to 7 3 1025 with FDR-Indep; FDR-Corr
also requires programming a complicated algorithm, in-
cluding generating p-values from the null hypothesis,
which may be difficult to replicate and whose simulation
differs between datasets.

To summarize, we find that of the two FDR proce-
dures designed to handle dependent data, only FDR-
Corr is worth considering. As with the Bonferroni
method, FDR-General is too conservative to be useful.
We also find that, although it is designed for indepen-
dent data, FDR-Indep is robust to correlation in sim-
ulated data consistent with climate data and therefore
can be applied fairly safely, with the considerable ad-
vantage that it requires little computational or pro-
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FIG. 6. FDR plotted against a 5 n /n for (a) the original FDR-Indep procedure and (b) its modifiedHA

version (section 4), both applied to the simulated data of section 3b. The horizontal lines are at q 5 5%;
the additional solid line in (a) has slope (1 2 a) 3 q. (c) Power and (d) FNDR for the original and modified
FDR procedures are plotted against a 5 n /n only for data type B for clarity; results for data types A andHA

C are qualitatively similar. The solid line in (d) is y 5 x, the upper bound in (7). The testing procedure is
indicated by a distinguishing letter at the start of each curve: ‘‘I’’ for FDR-Indep and ‘‘M’’ for the modified
FDR-Indep.

gramming effort. We therefore favor FDR-Indep for its
simplicity.

4. A tighter FDR control

We argued in section 2 that, when multiple tests are
performed, the FDR is a more relevant quantity to con-
trol than the FPR. Then, in section 3, we demonstrated
by simulation that the original FDR-Indep procedure of
Benjamini and Hochberg (1995) performs sufficiently
well when applied to spatially correlated climate data.
Here, we show how to tighten the FDR control of FDR-
Indep to make it a more powerful procedure.

Letting a 5 n /n be the unknown proportion of trueHA

alternative hypotheses, Genovese and Wasserman
(2004) show that for FDR-Indep performed with nom-
inal FDR q,

FDR # (1 2 a)q. (5)

Since a ∈ [0, 1], then (1 2 a)q # q, so that (5) provides
an upper bound for FDR that is tighter than q. This
explains why, in Figs. 3a and 5a, the FDR curves fall
progressively further below q as a increases; indeed,
because the discrepancy between q and (1 2 a)q in-
creases with a, so does the discrepancy between q and
FDR. Figure 6a is a partial reproduction of Fig. 5a; it
shows the FDR curves of FDR-Indep, along with the
line (1 2 a)q, versus a. We see that all FDR curves
remain not only below (1 2 a)q, as expected from (5),
but also remain very close to (1 2 a)q for all a. We
would observe the same in Fig. 3a if we added the line
(1 2 a)q versus a.

This suggests a way to improve FDR control: to en-
sure that the FDR is as close as possible to, yet below,
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a specific rate q9, we should perform the FDR-Indep
illustrated in Fig. 2 with q such that q9 5 (1 2 a)q. We
call this the modified FDR-Indep procedure; p-values
are rejected according to (2) with

21q 5 (1 2 a) q9, which yields FDR # q9. (6)

Tighter FDR control increases the power of the test.
This is easily understood from Fig. 2; replacing the line
with slope q by the line with steeper slope (1 2 a)21q
(steeper since a $ 0) potentially allows more p-values
to be under that line and therefore rejected. For example,
if half the n locations have H0 false (a 5 0.5), then
performing FDR-Indep with q 5 10% in Fig. 2, com-
pared to the previous q 5 5%, still ensures that the
proportion of false discoveries is on average below, yet
close to, q9 5 5%.

Genovese and Wasserman (2004) also show that

FNDR # a, (7)

where the FNDR was introduced in section 2 as the rate
of tests we should have rejected out of the tests we
accepted; FNDR 5 E(nFN/nreject) in the notation of Table
1. Unlike the FDR, the FNDR cannot be controlled a
priori, so (7) is not useful other than for providing an
approximate upper bound for the expected number of
false negative errors,

E(n ) # an ,FN accept

as illustrated in Fig. 6d.
The implications of (5) and, to some extent, of (7)

are very attractive. The difficulty is that a is unknown
and therefore must be estimated; this adds variability to
the procedure and in turn may invalidate the inequalities
in (5) and (7). In the rest of this section, we show how
to estimate a, study how (5) and (7) hold on the sim-
ulated datasets of section 3, and finally return to our
example discussed in section 1.

a. Estimating a

Storey (2002) and Genovese and Wasserman (2004)
each propose estimators for a; the method we present
here is a hybrid. Let FP(x) denote the cumulative dis-
tribution function (CDF) of the p-values used to perform
the tests. For now, we develop the approach using the
true CDF; we will later describe how to estimate this
using the empirical CDF. Our estimate of a is

I F (x ) 2 xP i i21â 5 I max 0, withO [ ]1 2 xi51 i

(i 2 1)
x 5 x 1 (1 2 x ) 3 , (8)i 0 0 I

where xi takes I regularly spaced values between x0 and
1; we routinely use x0 5 0.8 and I 5 20 for reasons
justified below.

To make sense of (8), consider first the case a 5 0;

that is, all n locations have H0 true. It is well known
that when the tests are independent, the distribution of
the p-values is uniform on [0, 1]; that is,

0 if x # 0
F (x) 5 x if x ∈ [0, 1] (9)P 
1 if x $ 1.

Thus, FP(x) 2 x 5 0 for all x ∈ [0, 1], and since xi ∈
[0, 1] in (8), our estimate, â 5 0, matches the true a 5
0 perfectly.

Next, consider the general case where n 5 an lo-HA

cations have H0 false and the remaining n 5 (1 2H0

a)n have H0 true. Then the CDF of the p-values is a
mixture distribution:

F (x) 5 aF (x) 1 (1 2 a)F (x),P A 0 (10)

where FA(x) and F0(x) are the CDFs of the p-values in
the two subpopulations where H0 is, respectively, false
and true. As before, F0(x) is uniform on [0, 1] when
the tests are independent. On the other hand, FA(x) is
completely unknown, other than that it has more mass
toward zero than a uniform distribution since p-values
that correspond to locations with H0 false tend to be
small. To simplify our argument, assume that all such
p-values are smaller than some x0 , 1, so that FA(x)
has all of its mass between zero and x0. Then FA(x) 5
1 for all x $ x0, so that for xi $ x0, (10) reduces to
Fp(xi) 5 a 1 (1 2 a)F0(xi). This implies

F (x ) 2 xP i i 5 a
1 2 xi

in (8), yielding â 5 a exactly. More generally, there
exists some sufficiently large x0 ∈ [0, 1], so that FA(x0)
5 1 2 e, where e is a very small positive number; in
this case (8) yields an estimate, â, such that

Ie
21a 1 2 (1 2 x ) # â # a. (11)O i[ ]I i51

That is, â underestimates a although it is very close to
a when e is very small, which happens when x0 gets
close to 1. This explains why we use a fairly large value,
x0 5 0.8, in (8).

Note that the potential downward bias of â has no
adverse effect on the FDR procedure. Indeed, â # a
implies (1 2 a)q # (1 2 â)q, so that FDR control as
per (5) is preserved. The only consequence is that the
test is slightly more conservative than it would have
been had we known a.

The last difficulty is that FP(x) in (10) is unknown,
since neither a nor FA(x) are known. We estimate FP(x)
with the empirical density function (EDF) of the p-val-
ues in (1),

n

21F̂ (x) 5 n I (p ),OP [0,x] i
i51

where IS(pi) 5 1 if pi ∈ S, and IS(pi) 5 0 otherwise.
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FIG. 7. (a) Histogram of the p-values in the example from section 1. (b) Corresponding EDF (solid line)
is shown with the CDF of uniformly distributed p-values (dashed line) for comparison.

More simply, the EDF is the cumulative histogram of
the p-values, with histogram bins taken to be the small-
est distance between any two p-values. Figure 7 shows
the histogram and corresponding EDF of the p-values
in our example in section 1 and Fig. 1, from which,
applying (8), we obtain â 5 61.7%.

The use of F̂P(x) in place of FP(x) in (8) explains
why we take an average of I 5 20 values to estimate
a in (8); we hope to reduce the variability in â associated
with estimating FP(x). Additionally, even though we
have FP(x) $ x theoretically, F̂P(x) $ x does not nec-
essarily hold for all x since F̂P(x) is variable; to ensure
that â $ 0, we prevent negative contributions from the
xis for which F̂p(xi) , xi in (8).

b. Properties of the modified FDR-Indep—A
simulation study

The results in (5) and (7) are valid for FDR-Indep
applied to spatially independent data and when a is
known. We established in section 3 that the effect of
applying FDR-Indep to spatially correlated data was to
decrease the FDR, so that if a is known, then (5) also
holds for correlated data. However, a must be estimated,
and the method proposed in the last section is strictly
valid only for independent tests. Indeed, we have found
in the simulations that â overestimates a when the cor-
relation is strong. Now, â $ a implies (1 2 â)q # (1
2 a)q, which in turn implies that (5) no longer holds;
that is, FDR control is not necessarily guaranteed for
spatially correlated data. The purpose of this section is
to study how badly FDR control as per (5) degrades as
the spatial correlation in the data gets stronger. To do
that, we applied the modified FDR-Indep (6) to the sim-
ulated datasets from section 3, with results in Fig. 6.

Figure 6a isolates the FDR curves of the original
FDR-Indep procedure that were shown in Fig. 5a; Fig.
6b shows the FDR curves of the modified FDR-Indep
(6) applied to the same data. Focusing first on A data,
which are spatially independent so that â does not over-
estimate a, we see that the FDR is much closer to, yet
remains below, q9 5 5% for all a. That is, the modified
FDR-Indep provides not only FDR control but tighter
FDR control than the original FDR-Indep. Note, how-

ever, that the FDR curves drop well below q9 for large
a; the control degrades. This happens because the larger
a is, the less the uniform distribution F0(x) contributes
to (10), so that â underestimates a, as described in (11).

Figure 6b also shows that, for all a, the FDR curves
for B and C data are much closer to q than the original
FDR curves in Fig. 6a were to q, although they do
sometimes exceed q; FDR # q does not hold for all a,
as we expected since â overestimates a for spatially
correlated data. However, as argued in section 3, we
constructed data type C with spatial correlation more
extreme than most real climate data, so the breakdown
of FDR control we see here is as extreme as one is
likely to experience. For data B, which have correlation
consistent with the temperature variance of section 1,
FDR control hardly degrades at all. We therefore con-
clude that the modified FDR-Indep procedure provides
tight FDR control for the vast majority of climate data.

Finally, Figs. 6c and 6d show the power (1 2 FNR)
and FNDR curves of FDR-Indep and its modified coun-
terpart. For clarity, only the curves for data type B are
plotted; the other curves were qualitatively similar. It is
clear that the power and FNDR of the modified pro-
cedure are respectively larger and smaller than the pow-
er and FNDR of the original procedure; indeed, allowing
more rejections entails a larger number of false positive
detections nFP and therefore a smaller number of false
negative ones nFN. The FNDR curves are below a, sug-
gesting that (7) does hold, although a is not a tight upper
bound; hence the upper bound on the expected number
nFN of false negative discoveries is not tight either.

To conclude, both the original and the modified FDR-
Indep procedures control the FDR, but the latter has
higher power and lower FNDR; it is therefore a better
procedure. Additionally, it is fairly resistant to spatial
correlation in the data.

c. Temperature variance example revisited

In our motivating example in section 1, we found
significant increases in temperature variance over 51 yr
at 941, 19, and 338 locations, using, respectively, the
FPR (a 5 5%), the Bonferroni (a 5 302421 3 5%),
and the original FDR-Indep (q 5 5%) procedures; these
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FIG. 8. Map of locations with significant trends in the temperature
variance index, 1949–99, in the area 208–708N based on FDR-Indep
in section 2 (dark gray), and its modified version of section 4 (light
1 dark gray), both with FDR # 5%.

locations are shown in Fig. 1. We now apply the mod-
ified FDR-Indep.

Applying (8) with the estimate F̂P(x) shown in Fig.
7b yields â 5 61.7%, which indicates that approxi-
mately 61.7% of the locations have H0 false. Based on
Fig. 6, we trust that using â in place of the unknown a
will yield reasonable results, since the temperature var-
iance data have the same correlation structure as data
type B. Such a large value of â 5 61.7% first surprised
us because FDR-Indep had only rejected nreject 5 338
out of n 5 3024 locations, barely more than 10%. This
discrepancy can be explained. First, many locations that
have H0 false might not show enough change to reach
statistical significance. Second, we know from (5) and
Fig. 5 that when a is large, the FDR-Indep procedure
does not provide good FDR control, in the sense that
FDR is well below q. The modified procedure of this
section will help tighten the FDR control greatly and
give more power to detect locations with H0 false.

Accordingly, we perform FDR-Indep once more, this
time with q 5 (1 2 0.617)21 3 5% to ensure that FDR
# 5% as per (5). We now find that nreject 5 807 locations
show a significant change in temperature variance over
the last 50 yr, as indicated in Fig. 8. Moreover, (5) and
(7) suggest that the number nFP of false positive dis-
coveries is approximately less than 807 3 5% 5 41,
while the number nFN of locations we failed to detect
is less than (3024 2 807) 3 61.7% 5 1368.

This last result suggests that we fail to detect a con-
siderable number of locations with H0 false. This seems
more alarming than it really is. There are three reasons;
the first two are specific to FDR procedures, and the
last concerns detection of significance at large. First,

nFN is probably much less than 1368, because the upper
bound for FNDR in (7) is not particularly tight for the
modified FDR-Indep procedure, as observed in Fig. 6d.
We know of no theoretical result that would provide a
tighter upper bound for FNDR. Moreover, our data is
spatially correlated, so that â likely overestimates a, the
true proportion of alternative hypotheses, which further
inflates our already loose upper bound for nFN. Last,
many locations that may have H0 false do not show a
strong enough signal to be declared significant, so that
from a statistical (or any other) point of view, these
locations are not distinguishable from the locations that
have H0 true.

5. Conclusions

We started this paper by comparing and contrasting
the traditional FPR and the FDR procedures, which con-
trol the proportion of false positive discoveries in dif-
ferent ways. We then argued in section 2 that the FDR
procedure controls a more useful criterion: the rate of
falsely rejected hypotheses out of all rejected hypoth-
eses. In section 3, we investigated the robustness of the
original FDR procedure of Benjamini and Hochberg
(1995; which we denote FDR-Indep) to spatial corre-
lation in the data and found that it is not only robust,
but that its performance is just about as good as that of
other FDR procedures that were later developed to han-
dle correlated data, and it is much simpler to apply than
its direct competitor FDR-Corr (Yekutieli and Benja-
mini 1999). In section 4, we presented an improvement
for FDR-Indep, recently developed by Genovese and
Wasserman (2004), which gives FDR-Indep tighter con-
trol of the FDR and thus increases its power to detect
significant changes. This requires that the unknown pro-
portion of true alternative hypotheses be estimated. The
method we propose overestimates this proportion when
high spatial correlation is present in the data, but the
effect on FDR control is minimal. Supplementary ma-
terial consisting of sample R, S-Plis, and Matlab code
for implementing the original and modified FDR-Indep
procedures is available online at http://dx.doi.org/
JCLI3199.s1. This material is also available at the first
author’s home page (available online at http://
www.stat.cmu.edu/;vventura/ClimFDR.html), and in
the S and Matlab software archives at StatLib (available
online at http://lib.stat.cmu.edu).

In conclusion, we have summarized the current state-
of-the-art techniques in multiple testing and have dem-
onstrated the properties of the FDR method based on
simulated data that are consistent with climate data.
Based on these studies, we believe that the FDR-Indep
procedure and its modified version are powerful testing
procedures that provide effective FDR control.
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