#### **Introductory Statistics and Graphics**

Deborah Nolan University of California, Berkeley

#### Overview

- Background & Motivation
- Students will be able to...
- Example assignments
- Student work and feedback
- Sample lecture material on graphics

### **Background & Motivation**

# **Traditional Syllabus:**

- Time spent on graphics is short
- Types of plots shown are simple (histogram and scatter plot)
- Balance of topics is in favor of Confirmatory Data Analysis rather than Exploratory Data Analysis
- · Visual communication of results is lacking

#### Syllabus has more emphasis on

- Data types, subsets, & comparisons so know what type of plot and analysis is appropriate
- Summary statistics follow easily from summary plots
- Introduction to R needed to make plots
- Multivariate statistics once working on the computer, it's natural to cover more than univariate and bivariate situations
- Presentation Graphics how to communicate your findings effectively through a few key plots

#### Potential with Graphics:

- Alternative approach to learning concepts
  - Constructive
  - Method of comparison, variation, distribution
- Student use visualization throughout the course (not just at the beginning)
  - Creative and meaningful data analysis
  - Discovery through visualization
- Opportunity to introduce more modern methods
  - Excite students to study statistics

#### Students will be able to:

#### **Analysis:**

- Carry out Exploratory Data Analysis to uncover structure in data
- Use data visualizations as a first step in modeling
- Integrate the use of graphics through out the analysis process, including confirmatory and reporting stages

#### Communication:

- Describe a graphic using a common vocabulary
- Read and think critically about a graphic
- Create a graphic that conveys key points of an analysis
- Create presentation graphics, i.e.
  - Appropriate use of scale, color, labels, markers

#### Technical skills:

- Choose appropriate graphic for different types of data
- Design a plot that conveys a message clearly and precisely
- Entry point for learning statistical software

#### **Graphics Assignments**

#### **Assignments**

- 1) A first exploratory assignment
- 2) Deconstruct-reconstruct
- 3) One-minute revelation
- 4) Mashup/New form of presenting data (advanced)
- 5) Copy the Masters (advanced)

#### A First Exploratory Assignment

- Provide students with data and an openended question to investigate
- Assignment Includes intermediate questions that promote the method of comparison
- Students Use ONLY plots to discover features of the data
- Students write a short paper on findings

#### A First Exploratory Assignment

- Assign it early in the semester to set expectations of continued analysis with plots
- Use "large" data (~1000 observations, many variables) so the option of visual inspection of raw data is not going to work
- Require the use of one "unusual" plot to encourage creativity

#### Deconstruct – reconstruct

- Each pair of students Chooses a plot that satisfies the following:
  - Topic of interest to the students
  - Understand the message the plot-maker is trying to convey
  - Can improve on the message with a better plot
  - Source from a collaborative visualization site

#### Deconstruct – reconstruct

- Deconstruct Write a caption for the plot that:
  - Explains the message in the plot
  - Describes the plot using plotting vocabulary
  - Critiques plot according to guidelines of good graphics

#### Deconstruct – reconstruct

- Reconstruct
  - Remake plot, fixing the issues found
  - Augment the plot with additional information that makes the message clearer
  - Write a caption that explains the message by pointing out important features in the plot



#### One-minute revelation

- Students work in teams on a data set
- Each student on the team creates one plot that reveals an important feature of data
- Each student Prepares 1-minute description of the plot
- Coordinate plot & presentation with team members

#### One-minute revelation

- Purpose
  - Get started on team project
  - Make each student take part in the analysis
  - Get team working together
  - Students receive early input from instructor
  - Skills useful in work place

# Indoor Radon Levels (Stat Labs)

- Radon radioactive gas emitted from soil, rock, water; can accumulate to unsafe levels
- Data: Survey results of radon levels for houses in Minnesota
- Question: How do we estimate radon levels for untested houses and decide if house should be tested?





# Mashup/New form of presentation

- Viewers expect to interact with graphical representations of data:
  - Obtain additional information
  - Produce a different view
  - Control an animation
- Google Maps, Google Earth RKML
- · Models for creating interactivity





# Copy the masters

- Assignment
  - Create a near-replica of a masterful presentation
- Purpose
  - Learn software
  - Learn how to learn about a technical subject
  - Become invested in R as a statistical tool
  - Gain practice with advanced/presentation graphics





**Student Feedback** 



# Copy Masters: (18 of 25)

- Helped to learn R basics- Yes: 18/18
- Expectations to research commands on own was a good learning process- Yes: 16/18
- Sample comments
  - Most memorable assignment
  - Most challenging and rewarding assignment
  - I felt much more confident about my abilities w R

### **Two Sample Lectures**

#### **Introductory Material**

#### **Introductory Lesson Approach**

- Embed introduction to plots and other statistics in context of a case study
- Begin course with graphics and model for the students how to read a plot and extract meaning from it

#### **Introductory Lesson Approach**

- Demonstrate how plotting is an iterative process
- Connect graphics to all statistical concepts throughout the course
- Continue to connect the choice of a plot to the type of data throughout the course

#### Know your data types

The appropriate graphical techniques depend on the kind of data that you are working with

- Quantitative
  - continuous e.g. height, weight
  - discrete numeric data with few values, e.g. number of children in family
- Qualitative
  - ordered categories with an order but no meaningful distance between, e.g. number of stars for a movie rating
  - nominal categories have no meaningful order, e.g. race

#### **Kaiser Study**

- Oakland Kaiser mothers
- 1960s
- Measure the babies weight (in ounces) at birth
- · All babies:
  - Male
  - Single births (no twins, etc.)
  - Survived 28 days

#### Information on mothers & babies

- · Birth weight (ounces)
- · Gestation (weeks)
- · Parity total number of previous pregnancies
- Mother's height and weight
- · Mother's smoking status
- Mother's age, race, education level, income
- And more...

# Here are the data for birth weight What do you see?

## Rug plot

Baby's birth weight is represented as a tickmark. The thicker lines are from multiple babies with similar weights. I added a little random noise to the weights to keep them from falling on top of each other.

What can you see now?



#### Distribution of Birth Weight

- The **distribution** is the pattern of variation in the birth weights.
- It provides the numerical values for birth weight and how often each value occurs.
- A histogram/density plot shows the shape of the distribution



#### **Histograms**

- Are a special case of density plots
- AREA = Proportion (or percent)
- The area of a bar:

Height \* Width = Area (Proportion/oz) \* oz = Proportion

- Histograms are not the same as bar charts
- With bar charts, it is only the height that matters. Bar charts are for qualitative data

# 



#### Selecting a bandwidth

- R chooses a bandwith for you, but you can specify one if you like.
- The goal is to see the overall shape of the distribution, not the individual points.
- In a way, the density is a smooth abstraction of the distribution.



#### Looking for Structure: Quantitative Distribution

- **Distribution:** pattern of values for a variable
- Mode: high density region
- Long Tail: many observations far from center
- Symmetry/Skewness: distribution of values the left and right of the center.
- Gaps: places where there are no observations.
- Outliers: unusually large or small values that falls well beyond the overall pattern of data



# Parity: Number of siblings

 This quantitative variable is different from birth weight – there are only a few possible values, i.e. it's not possible to have 2.3 siblings, and it's highly unlikely to have 17

>table(infants\$parity)

0 1 2 3 4 5 6 7 8 9 10 11 13 315 310 238 168 83 52 32 16 8 7 4 2 1





### Survey

- Random Sample of 91 of 314 Cal students enrolled in Stat 2
- Survey collected the following info:
  - sex Male/Female
  - grade grade expected in the course ("A", "B", "C", "D", "F")
- What type of data are these?
  - sex is qualitative (nominal)
  - grade is qualitative with an ordering (ordinal)

# Make tables of qualitative data > table(video\$grade) F D C B A 0 0 8 52 31 > table(video\$grade, video\$sex) Female Male F 0 0 D 0 0 C 8 0 B 21 31 A 9 22 Anything unusual about the expected grade? Does expected grade depend on gender?





### Method of Comparison

- Often, we not only want to better understand a distribution, but we want to compare the distribution for subgroups or to compare against another population or standard
- How do you think the expected grade distribution might vary with gender?



### How to read a Mosaic plot

There are 91 students in the survey.
Think of them as spread out evenly in the box



# Put all the females on one side of the box. There are 38.





# **SF Housing Data**

Record: house sold in a particular time period

Variables:

- City
- County
- Over 200,000 houses
- Price
- # bedrooms
- Subset to a dozen cities in the East Bay – about 25,000 houses
- Lot square footage
- and 10 more

# Relationship between city and sale price

Data types:

City - factor

Sale price - numeric





# Relationship between price per square foot and total square foot

Both are quantitative





# Relationships between more than 2 variables

- Qualitative information can be conveyed in plots through color, plotting symbol, juxtaposed panels
- The following plot uses information from 4 variables: city, number of bedrooms, lot size (sq ft), and price per square ft



# Summary of graph relationships between two variables

- Two Qualitative variables
  - mosaicplot, side-by-side barplots
- One Quantitative and one Qualitative
  - Boxplots, dotcharts, multiple density plots, violin plots
- Two Quantitative variables
  - Scatter plot, line plot

# Elements of Good Graphic Construction

# Outline

- Vocabulary
- 3 Properties of good graph construction
  - Data stand out
  - Facilitate comparison
  - Information rich
- Perception

Vocabulary

















Most of the data are in the 0 to 10 range. The few large values obscure the bulk of the data. Consider mentioning these large values in a caption, instead of showing them in the plot.

# Choosing the Scale of the Axis

- · Include all or nearly all of the data
- Fill data region
- Origin need not be on the scale
- Choose a scale that improves resolution (to be continued)

#### Eliminate superfluous material

- Chart junk stuff that adds no meaning, e.g. butterflies on top of barplots, background images
- · Extra tick marks and grid lines
- Unnecessary text and arrows
- Decimal places beyond the measurement error or the level of difference

# **Facilitate Comparisons**



#### 

# Choosing the Scale

- Keep scales on x and y axes the same for both plots to facilitate the comparison
- Zoom in to focus on the region that contains the bulk of the data
- These two principles may go counter to one another
- Keep the scale the same throughout the plot (i.e. don't change it mid-axis)







# Comparison: volume, area, height We naturally compare the volume of the barrels, but the change is really the height of the barrels

#### **Information Rich**

#### How to make a plot information rich

- Describe what you see in the Caption
- Add context with Reference Markers (lines and points) including text
- Add Legends and Labels
- Use color and plotting symbols to add more information
- Plot the same thing more than once in different ways/scales
- · Reduce clutter

# **Captions**

- Captions should be comprehensive
- Self-contained
- Captions should:
  - Describe what has been graphed
  - Draw attention to important features
  - Describe conclusions drawn from graph

### **Good Plot Making Practice**

- Put major conclusions in graphical form
- Provide reference information
- Proof read for clarity and consistency
- Graphing is an iterative process
- Multiplicity is OK, i.e. two plots of the same variable may provide different messages
- Make plots data rich

### Perception

Color, shape (including banking) can affect comparisons

# Banking: Aspect Ratio

- The height/width of the data region was selected to be about 1 so that the trend line is at about 45 degrees.
- The Aspect ratio affects our visual decoding of the rate of change
- The banking to 45 degrees helps us see rate of change
- The ability to effectively judge rate of change allows us to see important patterns in data



#### Color

#### **Color Guidelines**

- Choosing a set of colors which work well together is a challenging task for anyone who does not have an intuitive gift for color.
- 7-10% of males are red-green color blind.

#### Colorfulness

- Saturated/colorful colors are hard to look at for a long time.
- They tend to produce an after-image effect





#### Luminance

- If the size of the areas presented in a graph is important, then the areas should be rendered with colors of similar luminance (brightness).
- Lighter colors tend to make areas look than darker colors

## Data Type and Color

- Qualitative Choose a qualitative scheme that makes it easy to distinguish between categories
- Quantitative Choose a color scheme that implies magnitude.
  - Does the data progress from low to high? Use a sequential scheme where light colors are for low values
  - Do both low and high value deserve equal emphasis? Use a diverging scheme where light colors represent middle values







Case: CO2 levels at Mauna Loa

Time and the horizontal axis



#### Mauna Loa Observatory

- Far from any continent, the air sampled is a good average for the central pacific.
- Being high, it is above the inversion layer where local effects are present.
- Measurements of atmospheric CO<sub>2</sub> since 1958

   longest continuous record



#### Atmospheric Carbon Dioxide

- The increasing amount of CO<sub>2</sub> in the atmosphere from the burning of fossil fuels has become a serious environmental concern.
- Upper safety limit for atmospheric CO<sub>2</sub> is 350 parts per million
- Does a rise in CO<sub>2</sub> lead to a rise in world temperatures?







### **Aspect Ratio**

- The height/width of the data region was selected to be about 1 so that the trend line is at about 45 degrees.
- The banking to 45 degrees let's us see that the curve is convex
- This means that the rate of increase of CO<sub>2</sub> is increasing through time



# Resources

- The Elements of Graphing Data, Cleveland
- Visual Revelations, Wainer
- The Visual Display of Quantitative Information, Tufte

Thank You