Activities and Demos for improved understanding of statistical concepts

> Deborah Nolan University of California, Berkeley

Outline

- Why use activities and demos in a course?
- Some favorite activities in probability
- How to design, test, and carry out an activity

Why use demos and activities?

- Assessment
- Engagement
- Alternative mode of learning

Assessment

- Immediate feedback to instructor
 - Find out what is unclear
 - Tailor instruction to current situation to make it more effective
- Correct misconceptions sooner
 - Students get confusions cleared in the moment
 - Misunderstandings don't interfere with new material

Engagement

- Promote discussion
 - Student participation can lead to better understanding
 - Students more likely to identify points of misunderstanding at other times
- Foster group work for team projects

Alternative Approach to Learning

- Activities involve verbalizing approach, trying out test cases
- Demos involve watching a simple example unfold
- Offer multiple modes of instruction to increase likelihood of understanding
- Reference point for future development of ideas

Sample Activities

What does it mean to be Random?

- Haphazard lacking any obvious principle of organization
- Without thinking -Off the top of head
- Unplanned -First person you run into on the street

8

What does it mean to be Random?

TRY THIS – MAKE UP 100 TOSSES OF A FAIR COIN

Count the number of times that the flips switch back and forth between heads and tails

9

Find the length of the longest run of either heads or tails

I define the second second

Resolution

- "To be random" in statistics and probability has a formal definition
- It's not easy to act like a chance process
- Using chance devices is important if we want things to behave as if they are random
- Later we will see why this might be important (reference point)

14

An important difference between these two questions:

- First Question:
 - Looking for a match in the group to a particular day
 - Success is a match to June 28
- Second question:
 - Look for a match between any pairs in the group
 - Success is a match for any pair

13

Outcome space:

- Think about it from the opposite direction – No birthday buddy
- Chance no one has my birthday in a group of 20: $(364)^{19}$

$$\left(\frac{364}{365}\right) = 0.95$$

• Chance no buddies in the group is:

 $\left(\frac{364}{365}\right) \times \left(\frac{363}{365}\right) \times \dots \times \left(\frac{346}{365}\right) = 0.59$

ResolutionSurprising• Be careful with the outcome spaceFull of So• Finding the chance of the complement of an
event can be easier than the direct calculationWe filter out the
misses and keep
track of the matches• We have made some approximations to
compute this chance – ignore leap year,
assume independence, others.We filter out the
misses and keep
track of the matches• TRY THIS
you fin
comment

18

Resolution

- There are many rare events, e.g. the chance that you and I both like singer Roy Orbison, if you look for enough rare events then it's highly likely that one will occur
- Caution in attributing meaning to findings
- This concept is related to data snooping

Conditioning comes Naturally

Pick 1 person to be
a liar.Lie detector mistakes:
Liars: roll 1-5 = failThe rest of us tell
the truth.Truth: roll 6 = fail

All of those who failed stand up. What's the chance one of those standing is a liar?

Conditioning comes Naturally $P(fail | liar) = \frac{5}{6} \qquad P(fail | truth - teller) = \frac{1}{6}$ That's natural to compute. But we want: $P(liar | fail) = \frac{P(liar and fail)}{P(fail)} = \frac{\frac{5}{6}l}{\frac{5}{6}l + \frac{1}{6}(1 - l)}_{19}$

Why not just do the calculation on the board?

- AHA! element is visceral and brings the point home
- We have a population that we can examine to get at the finer points
- Can connect the event to later calculations types of errors, likelihood, etc.

• You are on your own to find the solution

• Sometimes we just give students problems for fun

Probability Activities Summary:

- Random not same as haphazard
- Outcome space: Me versus Anyone
- Rare events do happen
- · Conditional: direction matters
- · Hard fun problems

Preparing your own activities

Can you afford the class time?

- Advance preparation is key to pare down the activity to the essential parts
- Closely Integrate the activity into the lecture so it's not time-away from learning
- Have students multi-task if activity involves sharing materials

How to prepare

- Plan
- Materials list and activity template
- Handouts that ensure activity is done correctly and lengthy calculations avoided
- Dry run, adjust for classroom size and arrangement
- Notes for next time

5 E - Template

- *Engage*: Object/event used to engage students.
- *Explore:* What will students do?
- *Explain*: What is the key point?
- *Elaborate*: Connect to other topics, extend understanding.
- *Evaluate*: Assess knowledge, skills, and lesson effectiveness.

Common Mistakes

- Don't run overtime no activity is so compelling that the punch-line can wait for the next class meeting
- Avoid unnecessary details if you can't easily connect the activity to the course material, then drop it.
- Confidentiality choose activities that students will readily and safely engage in
- Respect choose activities that students do not feel are demeaning

Other types of activities

- Introductions online bios with pics
- Think pair share
- One minute paper
- Latest news, blog, video
- Pop "quizzes" people now use clickers

