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Preview

1. Linear models are the standard approach for
analyzing microarray and next-generation
sequencing data (e.g., R package “limma”).

2. Moderated statistics help reduce false positives by
using an empirical Bayes method to perform standard
deviation shrinkage for test statistics.

3. Beyond linear models: we can assess evidence using
parameters that are more scientifically interesting
(e.g., ATE) by way of TMLE.

4. The approach of moderated statistics easily extends
to the case of asymptotically linear parameters.
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Motivation: Let’s meet the data
▶ Observational study of the impact of occupational

exposure (to benzene), with data collected on 125
subjects and roughly 22,000 biomarkers.

▶ Biomarkers of interest are in the form of miRNA,
assessed using the Illumina Human Ref-8 BeadChips
platform.

▶ Occupational exposure to benzene reported as
discrete values of interest (to epidemiologists): none,
< 1ppm, > 5ppm.

▶ Background (phenotype-level) information available
on each subject, including age, sex, smoking status.
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Data analysis? Linear models!
▶ For each biomarker (b = 1, . . . ,B), fit a linear model:

E[yb] = Xβb

▶ Generally, we have a particular model coefficent in
which we are interested (e.g., effect of benzene on
biomarker expression).

▶ Controlling for baseline covariates, batch effects, and
potential confounders happens by adding terms to
the linear model.

▶ Test the coefficent of interest using a standard t-test:

tb =
β̂b −βb,H0

sb
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LIMMA: Linear Models for Microarray Data
▶ When the sample size is small, s2

b may be so small
that small differences (β̂b −βb,H0) lead to large tb.

▶ Uncertainty in the variance is an acute problem when
the sample size is small.

▶ This results in false positives. Smyth proposes we get
around this by an empirical Bayes shrinkage of the s2

b.

▶ Test the coefficent of interest with a moderated t-test:

t̃b =
β̂b −βb,H0

s̃b
, s̃2

b =
s2

bdb +s2
0d0

db +d0

▶ Eliminates large t-statistics merely from very small sb.
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Beyond linear models
▶ It’s not always desirable to specify a functional form:

perhaps we can do better than linear models?

▶ Such models are a matter of convenience and not
honest scientific practice: does β̂b really answer our
questions?

▶ We can do better by using parameters motivated by
causal models (n.b., these will reduce to “variable
importance measures” in our case).

▶ As long as the parameters we seek to estimate have
asymptotically linear estimators, we can readily apply
the approach of moderated statistics.
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Target parameters for complex questions
▶ Rather than being satisfied with β̂b as an answer to

our questions, let’s consider a simple target
parameter: the average treatment effect (ATE):
Ψb(P0)=EW,0[E0[Yb |A=ahigh,W]−E0[Yb |A= alow,W]]

▶ No need to specify a functional form or assume that
we know the true data-generating distribution P0.

▶ Parameters like this can be estimated using targeted
minimum loss-based estimation (TMLE).

▶ Asymptotic linearity:

Ψb(P∗
n)−Ψb(P0) =

1
n

n
∑
i=1

IC(Oi)+oP(
1√
n
)
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Targeted Minimum Loss-Based Estimation
▶ TMLE produces a well-defined, unbiased, efficient

substitution estimator of target parameters of a
data-generating distribution.

▶ Iterative procedure (though there is a one-step now)
that updates an initial estimate of the relevant part
(Q0) of the data generating distribution (P0).

▶ Like corresponding A-IPTW estimators, removes
asymptotic residual bias of initial estimator for the
target parameter. If it uses a consistent estimator of
g0 (nuisance parameter), it is doubly robust.

▶ We can estimate the target parameter:

Ψb(P∗
n) =

1
n

n
∑
i=1

[Q(b,1)
n (Ai = ah,Wi)−Q(b,1)

n (Ai = al,Wi)]
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Inference with influence curves
▶ The influence curve for the estimator is:

ICb,n(Oi) =

(
1(Ai = ah)

gn(ah | Wi)
− 1(Ai = al)

gn(al | Wi)

)
· (Yb,i − Q̄(b,1)

n (Ai,Wi)) + Q̄(b,1)
n (ah,Wi)

− Q̄(b,1)
n (al,Wi)−Ψb(P∗

n)
(1)

▶ Sample variance of the influence curve:
s2(ICn) =

1
n ∑n

i=1 (ICn(Oi))
2

▶ Use sample variance to estimate the standard error:

sen =

√
s2(ICn)

n
▶ Use this for inference — that is, to derive uncertainty

measures (i.e., p-values, confidence intervals).
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Moderated statistics for target parameters
▶ One can define a standard t-test statistic for an

estimator of an asymptotically linear parameter (over
b = 1, . . . ,B) as:

tb =

√
n(Ψb(P∗

n)−Ψ0)

sb(ICb,n)

▶ This naturally extends to the moderated t-statistic of
Smyth:

t̃b =

√
n(Ψb(P∗

n)−Ψ0)

s̃b
where the posterior estimate of the variance of the
influence curve is

s̃2
b =

s2
b(ICb,n)db +s2

0d0
db +d0
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An influence curve transform
▶ Need the estimate for each biomarker (b) and the IC

for every observation for that biomarker, repeating for
all b = 1, . . . ,B.

▶ Essentially, transform original data matrix such that
new entries are:

Y∗
b,i = ICb,n(Oi;Pn)+Ψb(P∗

n)

▶ Since E[ICb,n] = 0 across the columns (units) for each
b, the average will be the original estimate Ψb(P∗

n).

▶ For simplicity, let’s assume the null value is Ψ0 = 0 for
all b. Then, applying the moderated t-test to Y∗

b,i will
generate corrected, conservative test statistics t̃b.
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Why moderated statistics in this context?

▶ Often times, such data analyses are based on
relatively small samples.

▶ To get a data-adaptive estimate, with standard
implementation of these estimates, standard errors
can be non-robust.

▶ Practically, “significant” estimates of variable
importance measures may be driven by poorly and
underestimated s2

b(ICb,n).
▶ Moderated statistics shrink these s2

b(ICb,n) (making
them bigger), thus taking biomarkers with small
parameter estimates but very small s2

b(ICb,n) out of
statistical significance.
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Software implementation: “R/biotmle”

▶ An R package that “facilitates biomarker discovery by
generalizing the moderated t-statistic of Smyth for
use with asymptotically linear parameters.”

▶ Check it out on GitHub: nhejazi/biotmle

12
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Data analysis with “R/biotmle”
▶ Observational study of the impact of occupational

exposure (to benzene), with data collected on 125
subjects and roughly 22,000 biomarkers.

▶ Baseline covariates W: age, sex, smoking status; all
were discretized.

▶ Treatment A is degree of Benzene exposure: none,
< 1ppm, and > 5ppm.

▶ Outcome Y is miRNA expression, median normalized.

▶ Estimate the parameter:
Ψb(P∗

n)=E[E[Yb |A=max(A),W]−E[Yb |A=min(A),W]]

▶ Apply moderated t-test as previously discussed.

13
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Analysis results I: Uncorrected tests
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Analysis results II: Corrected tests
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Analysis results III: Volcano plot
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Analysis results IV: Heatmap of IC estimates
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Review

1. Linear models are the standard approach for
analyzing microarray and next-generation
sequencing data (e.g., R package “limma”).

2. Moderated statistics help reduce false positives by
using an empirical Bayes method to perform standard
deviation shrinkage for test statistics.

3. Beyond linear models: we can assess evidence using
parameters that are more scientifically interesting
(e.g., ATE) by way of TMLE.

4. The approach of moderated statistics easily extends
to the case of asymptotically linear parameters.
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