STAT 206A: Polynomials of Random Variables

11

Lecture 11

Lecture date: October 4, 2004 Scribe: Elchanan Mossel

1 Hyper-contraction of noise operators

In this section we begin the analysis of noise-correlation. The main interest here is understanding the correlation between $f(x_1, \ldots, x_n)$ and $f(y_1, \ldots, y_n)$ where (x_1, \ldots, x_n) are chosen from a product distribution and (y_1, \ldots, y_n) is obtained from (x_1, \ldots, x_n) be applying some noise to each coordinate independently. The main difference in our study here compared to the study of influences will be our interest in re-randonmizing many coordinates simultaneously, instead of studying the perturbation caused by a single parameter. Interestingly, our first application of this theory of noise-correlation will be to the study of influences.

We begin with a general defintion of tensor product of operators – this corresponds to applying noise independently to each coordinate. Then we will study a strong propery of these operators, named hyper-contraction – this will be use frequently later.

1.1 Noise operators

Definition 1 A operator $T: L^2(\mu) \to L^2(\mu)$ is called positivity improving if $Tf \geq 0$ for all $f \geq 0$. We will call T a noise operator if it is positivity improving, $||Tf||_2 \leq ||f||_2$ for all f, T1 = 1 and $\langle Tf, g \rangle = \langle f, Tg \rangle$ for all $f, g \in L^2(\mu)$.

Example 2 Let (Ω, μ) be a finite probability space and let M a Markov chain that is reversible with respect to μ . M corresponds to a non-negative $|M| \times |M|$ matrix that satisfies:

$$\sum_{y} M(x, y) = 1,$$

for all $x \in \Omega$ and

$$\mu(x)M(x,y) = \mu(y)M(y,x)$$

for all x and y. Let T_M be defined as follows

$$(T_M f)(x) = \sum_{y} M(x, y) f(y).$$

Then T_M a is noise operator:

$$||T_M f||_2^2 = \sum_x \mu(x) (T_M f)^2(x) = \sum_{x,y} \mu(x) (M(x,y) f(y))^2$$

$$\leq \sum_{x,y} \mu(x) M(x,y) (f(y))^2 = \sum_y \mu(y) f^2(y) = ||f||_2^2,$$

$$\langle T_M f, g \rangle = \sum_x \mu(x) T_M f(x) g(x) = \sum_{x,y} \mu(x) M(x,y) f(y) g(x) = \sum_{x,y} \mu(y) M(y,x) f(y) g(x) = \langle f, T_M g \rangle.$$

Example 3 Consider the space $L^2(\gamma_n)$ where γ_n is the n-dimensional Gaussian measure. Let $0 \le \rho \le 1$. The Orenstein-Uhelenbeck operator is defined by:

$$T_{\rho}f(x) = \mathbf{E}_{y \sim \gamma_n} [f(\rho x + \sqrt{1 - \rho^2}y)].$$

In order to check that this is a noise operator note that

$$\mathbf{E}_{x \sim \gamma_n}[(T_\rho f)^2(x)] = \mathbf{E}_{x \sim \gamma_n} \left[\mathbf{E}_{y \sim \gamma_n}^2 [f(\rho x + \sqrt{1 - \rho^2} y) | x] \right]$$

$$\leq \mathbf{E}_{x \sim \gamma_n, y \sim \gamma_n} [f^2(\rho x + \sqrt{1 - \rho^2} y)] = \mathbf{E}_{x \sim \gamma_n} [f^2(x)],$$

where the last equality follows from the fact that if N_1, N_2 are two independent standard Gaussian vectors, then so is $\rho N_1 + \sqrt{1-\rho^2}N_2$.

We also have that

$$\langle T_{\rho}f, g \rangle = \mathbf{E}[f(X)f(Y)],$$

where (X,Y) is a normal 2n-dimensional vector where $\mathbf{Cov}[X_i,X_j] = \mathbf{Cov}[Y_i,Y_j] = \delta_{i,j}$ and $\mathbf{Cov}[X_i,Y_j] = \rho \delta_{i,j}$. Since this expression is symmetric in X and Y it follows that

$$\langle T_o f, g \rangle = \langle f, T_o g \rangle.$$

1.2 Tensor products of noise operators

Definition 4 Let $T_i: L^2(\mu_i) \to L^2(\mu_i)$ be a bounded linear operator. Let U^i be a basis of $L^2(\mu_i)$. We define $T = \bigotimes_{i=1}^n T_i$ to be the linear operator satisfying

$$T(\bigotimes_{i=1}^{n} u_i) = \bigotimes_{i=1}^{n} (T_i u_i),$$

for every basis element $\bigotimes_{i=1}^{n} u_i$.

This definition roughly says that T acts on coordinates i by T_i . One needs to check that this definition does not depend on the choice of basis.

Lemma 5 The operator T does not depend on the choice of basis.

Proof: We need to prove that for any two bases $\bigotimes_{i=1}^n U^i$ and $\bigotimes_{i=1}^n V^i$ we get the same operator. Clearly it suffices to show that assuming $U^i = V^i$ except at a single coordinate i that we may assume WLOG is 1. In other words, it suffices to show we obtain the same operator for $U^1 \otimes \ldots \otimes U^n$ and for $V^1 \otimes U^2 \otimes U^n$. This follows immediately from the linearity of T_1 . \square

Lemma 6 Let $T_i: L^2(\mu_i) \to L^2(\mu_i)$ be a bounded linear operators. Let $T_i^*: L^2(\prod_{i=1}^n \mu_i) \to L^2(\prod_{i=1}^n \mu_i)$ be defined by

$$(T_i^* f(\cdot, \dots, \cdot))(x_1, \dots, x_n) = (T_i f(x_1, \dots, x_{i-1}, \cdot, x_{i+1}, \dots, x_n))(x_i).$$

Then $\prod_{i=1}^n T_i^* = \bigotimes_{i=1}^n T_i$ and the operators T_i^* commute.

Proof: It suffices to check that $\prod_{i=1}^n T_i^* = \prod_{i=1}^n T_i$ for basis elements. \square

Lemma 7 If T_1, \ldots, T_n are noise operators then so is $\bigotimes_{i=1}^n T_i$.

Proof: It is easy to see that each of the T_i^* is a noise operator. \square

Lemma 8 Suppose T^i is a Markov operator on $L^2(\mu_i)$ that is defined by a reversible Markov chain M^i . Then the operator $\bigotimes_{i=1}^n T^i$ is the operators defined by the Markov chain M where,

$$M(x,y) = \prod_{i=1}^{n} M^{i}(x_{i}, y_{i}).$$

Proof: It suffices to show that the two operators acts the same on tensors. Let $u = \bigotimes_{i=1}^n u_i$ be such a tensor then

$$(T_M u)(x) = \sum_y M(x, y) u(y) = \sum_y \prod_{i=1}^n M^i(x_i, y_i) u_i(y_i) = \prod_{i=1}^n \left(\sum_{y_i} M^i(x_i, y_i) u_i(y_i) \right) = \prod_{i=1}^n T_{M^i}(u_i),$$

as needed. \square

Example 9 The most important noise operator we will study is the Bonami-Beckner operator. This operators is specified by a single parameter $0 \le \rho \le 1$. The operator T_{ρ} is defined on $L^2(\prod_{i=1}^n \mu_i)$ by $T_{\rho} = \bigotimes_{i=1}^n T_{\rho}^i$, where $T_{\rho}^i(f) = \rho f + (1-\rho)\mathbf{E}[f]$. Note that the operator T^i may be defined via the Markov chain M^i where $M^i(x,y) = \rho \delta_x + (1-\rho)\mu(y)$. Therefore the operator T_{ρ} corresponds to M(x,y) where $y_i = x_i$ with probability ρ and is chosen independently from the measure μ independently for all i.

Noise operators are contractions by definition. They satisfy $||Tf||_2 \le ||f||_2$. More importantly, many of these operators are hyper-contractive.

Definition 10 Let $1 \leq p \leq q$ then we say that the operator T is (p,q)-hypercontractive satisfies $||Tf||_q \leq ||f||_p$ for every f with $||f||_p < \infty$.