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1 Hyper-contraction of noise operators

In this section we begin the analysis of noise-correlation. The main interest here is un-
derstanding the correlation between f(z1,...,zy,) and f(y1,...,yn) where (z1,...,x,) are
chosen from a product distribution and (yi,...,y,) is obtained from (z1,...,x,) be apply-
ing some noise to each coordinate independently. The main difference in our study here
compared to the study of influences will be our interest in re-randonmizing many coordi-
nates simultanously, instead of studying the perturbation caused by a single parameter.
Interestingly, our first application of this theory of noise-correlation will be to the study of
influences.

We begin with a general defintion of tensor product of operators — this corresponds to
applying noise independently to each coordinate. Then we will study a strong propery of
these operators, named hyper-contraction — this will be use frequently later.

1.1 Noise operators

Definition 1 A operator T : L?(u) — L?(u) is called positivity improving if Tf > 0 for all
f>0. We will call T a noise operator if it is positivity improving, |T fll2 < ||fll2 for all f,
T1 =1 and (Tf,g) = (f,Tg) for all f,g € L*(s).

Example 2 Let (Q, 1) be a finite probability space and let M a Markov chain that is re-
versible with respect to . M corresponds to a non-negative | M| x |M| matriz that satisfies:

ZM(‘Tay) =1,
Y

for all x € Q0 and
p(x) M (z,y) = p(y)M(y, )
for all © and y. Let Ty be defined as follows

(Tn f)(x) =Y M(2,y)f(y)-
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Then Ty a is noise operator:

ITv fl3 = ZM( N(Tar f)? ZM v)f(y))?
< 3 pl@)M(z,y) Zu )2 (y) = 113,

(T f. 9) Zu )T f(x Zu FWg) =Y )My, x) f(y)g(x) = (f, Trg).

Example 3 Consider the space L*(v,) where 7y, is the n-dimensional Gaussian measure.
Let 0 < p < 1. The Orenstein-Uhelenbeck operator is defined by:

Tof (@) = Bynr, [f(pr + V1 = p?y)].

In order to check that this is a noise operator note that

B, (p)2@)] = Bams, [E2o, [f(pr + V1= p2y)e]]
S [f2(pr+ V1= p?y)] = Ezvy, [f? ()],

where the last equality follows from the fact that if N1, No are two independent standard
Gaussian vectors, then so is pN1 + /1 — p?Ns.

We also have that
(Tpf,9) =E[f(X)f(Y)],

where (X,Y) is a normal 2n-dimensional vector where Cov[X;, X;] = Cov[Y;,Y;] = 6;;
and Cov[X;,Y;| = pd; ;. Since this expression is symmetric in X and Y it follows that

<Tpfa 9) = ([, T,9)-

1.2 Tensor products of noise operators

Definition 4 Let T; : L?(u1;) — L?(j;) be a bounded linear operator. Let U’ be a basis of
L%(p;). We define T = @7, T; to be the linear operator satisfying

T( @i ui) = @2 (Tiug),

for every basis element ®]'_u;.

This definition roughly says that T" acts on coordinates ¢ by 7;. One needs to check that
this definition does not depend on the choice of basis.
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Lemma 5 The operator T does not depend on the choice of basis.

Proof: We need to prove that for any two bases ®7_ U’ and ®7 V' we get the same
operator. Clearly it suffices to show that assuming U’ = V* except at a single coordinate
i that we may assume WLOG is 1. In other words, it suffices to show we obtain the same
operator for U'®...®@U™ and for V! @ U?@U™. This follows immediately from the linearity
of T1. O

Lemma 6 Let T; : L?(p;) — L?(p;) be a bounded linear operators. Let Tj : L*(TTiy pi) —
LA(TT, wi) be defined by
(’Tz*f(, ey '))(:El, ce ,SL‘n) = (Ef(xl, ey Lj—1y 9y Lj41y e - - ,xn))(xl)

Then [[;, T; = @I, T; and the operators T; commute.

Proof: It suffices to check that [, T = [[;-, T; for basis elements. O
Lemma 7 IfTy,..., T, are noise operators then so is @i, T;.

Proof: It is easy to see that each of the 7" is a noise operator. O

Lemma 8 Suppose T' is a Markov operator on L*(u;) that is defined by a reversible Markov
chain M*. Then the operator ®?:1Ti is the operators defined by the Markov chain M where,

n

M(z,y) = [ M (i, 9s)-

=1

Proof: It suffices to show that the two operators acts the same on tensors. Let u = ®'_;u;
be such a tensor then

n
(Taru)( ZMxy ZHM i, Yi)ui (y:) H(ZM i, Yi)ui yz) HTMz u;),

Yy i=1 =1

as needed. O

Example 9 The most important noise operator we will study is the Bonami-Beckner op-
erator. This operators is specified by a single paramter 0 < p < 1. The operator T, is
defined on L2(]_[Z 1) by T, = @ TZ where T’(f) = pf + (1 — p)E[f]. Note that the
operator T may be defined via the Mark;ov chain M* where M*(x,y) = pdy + (1 — p)u(y).
Therefore the operator T, corresponds to M(x,y) where y; = xz; with probability p and is
chosen independently from the measure u indpenedently for all i.

11-3



Noise operators are contractions by definition. They satisfy | Tf|l2 < || f|l2 . More impor-
tantly, many of these operators are hyper-contractive.

Definition 10 Let 1 < p < g then we say that the operator T is (p,q)-hypercontractive
satisfies |[Tf|lq < || fllp for every f with | fl, < co.
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