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notation: Where the definition of µ is clear from context, we let |f |q =
(∫

|f(x)|qµ(dx)
)1/q

denote the Lq(µ) norm. Similiarly, let 〈f, g〉 = 〈f, g〉µ =
∑

f(x)g(x)µ(dx) denote the inner
product of L2(µ).

Theorem 1 For all p < 2 < q, any discrete probability measure µ whose smallest atom
is of size α has the same (2, q)– and (p, 2)–hypercontractivity constants as the measure µα,
that assigns mass α and 1− α to 0 and 1, respectively.

Proof:

We will prove the result for the (2, q)–hypercontractivity contants, and the (p, 2) case will
follow by duality.

It is easy to show that if µ is (2, q, η)–hypercontractive, then so is µα. Indeed, suppose
otherwise. Then by definition, there exists an f : {0, 1} → R such that |Tηf |Lq(µα) >
|f |L2(µα), where Tη is the Bonami–Bechner operator. Let x be such that µ(x) = α. If we
then define g : R → R by

g(y) =

{
f(0) if y = x

f(1) o.w. ,

then we see that |g|Lp(µ) = |f |Lp(µα) and |Tηg|Lp(µ) = |Tηf |Lp(µα) for all p. However, by
(2, q, η)–hypercontractivity of µ, |Tηg|L2(µ) ≤ |g|L2(µ), which is a contradiction.

To show the converse, we will prove the following. Suppose that µ is not (2, q, η)–
hypercontractive, and let f0 maximize |Tηf |q among {f : |f |2 = 1}. We will show that
f0 obtains at most (and hence exactly) two values. This will complete the proof of the
theorem, since an f0 taking two values induces a two-point measure µβ on those values that
is not (2, q, η)–hypercontractive. Since β ≥ α, and the hypercontractivity constants for µγ

are monotone in γ, we have that µα is not (2, q, η)–hypercontractive either.

Exercise 2 (1 point) Show that the hypercontractive constants for µα is monotone in α.

The proof of the size of the range of f0 is as follows. Let I(f) = |Tηf |qq,
and J(f) = |f |22. We wish to use the method of Lagrange multipliers (see
www.wikipedia.org/wiki/Lagrange Multiplier for background), to which end we will think
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of I and J as acting on the finite-dimensional real vector space of functions f : spt(µ) → R.
Note that any linear function on this space can be represented uniquely as 〈f, ·〉µ for
some appropriate f , so we may write the derivate of, say, I, evaluated at a function g,
as DI(g) = 〈f(g), ·〉µ, for some f depending on g.

By the method of Lagrange multipliers, DI(f0) = cDJ(f0), for some constant c. Simple
computation reveals that DJ(f) = 2〈f, ·〉µ, and the chain rule allows us to also compute

DI(f0) = 〈q(Tηf0)q−1, Tη·〉µ
= qη〈Tη(Tηf0)q−1, ·〉µ,

since (DTη)f = Tη (here D is the derivative from Rn → Rn), and Tη is self-adjoint with
respect to 〈·, ·〉µ. Since DI(f0) = cDJ(f0), by uniqueness, we have that f0 = CTη(Tηf0)q−1

for some constant C.

Let g0 = Tηf0 + (1− η)E(f0), and note that

f0 =
1
η
g0 −

1− η

η
E(g0), (1)

and also that
f0 = CTηg

q−1
0 = C(ηgq−1

0 + (1− η)E(gq−1
0 )). (2)

However, note that for each x, the first equation (1) is linear in g0(x), while the second
equation (2) is strictly convex in g0(x). A linear function meets a strictly convex function
in at most two points, so there are at most two solutions (g0(x), f0(x)) to (1) = (2), and f0

takes at most two values.

2

Now we move on to the notion of hypercontractivity of random variables taking values in a
separable Banach space (e.g. Rn with any of the usual norms), and relate it to our previous
definition.

Throughout, we will denote by | · | the norm coming from the Banach space, and define a
family of norms ‖ · ‖q on random variables in this Banach space by ‖Y ‖q := (E|Y |q)1/q.

Definition 3 A random variable X taking values in a separable Banach space V is (p, q, σ)–
hypercontractive for some 0 < p < q and 0 < σ < 1 if, for all v ∈ V ,

‖v + σX‖q ≤ ‖v + X‖p.

Theorem 4 For a finite probability space (Ω,F ,P), the following are equivalent:

• Tη is (p, q)–hypercontractive.
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• Every mean–zero random variable X taking values in a separable Banach space is
(p, q, η)–hypercontractive.

• Every mean–zero real–valued random variable X is (p, q, η)–hypercontractive.

Proof: Trivially, B ⇒ C.

(C ⇒ A) Assume C, and let g = f − Ef , so that by letting v = Ef and X = ηg, we have
|Tηf |q = |Ef + ηg|q ≤ |Ef + g|p = |f |p. This shows A.

(A ⇒ B) By the triangle inequality, the function f(x) := |v+x| is convex, so using Jensen’s
inequality twice and that EX = 0,

Tηf(X) = ηf(X) + (1− η)Ef(X)
≥ ηf(X) + (1− η)f(EX)
= ηf(X) + (1− η)f(0)
≥ f(ηX),

and hence

‖v + ηX‖q = ‖f(ηX)‖q ≤ ‖Tηf(X)‖q ≤ ‖f(X)‖p = ‖v + X‖p.

2

Exercise 5 (1 point) Prove this lemma:

Lemma 6 Let q > 2, η > 0, and let X be a (2, q, η)–hypercontractive random variable such
that X 6= 0. Then EX = 0, E|X|q < ∞, and η < (q − 1)−1/2.

The following lemma relates (p, q, η)–hypercontractivity of a random variable X to its’
moments.

Lemma 7 Let X be a mean-zero real-valued random variable with E|X|q < ∞, where q > 2.
Then X is (2, q, ηq)–hypercontractive, where

ηq =
‖X‖2√

q − 1‖X‖q
.

Proof:

Let X ′ be an independent copy of X, and let Y = X −X ′, so that Y is symmetric. Let ε
be a further independent random variable taking values {+1,−1} with probability 1

2 each.
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Note that ‖Y ‖q ≤ 2‖X‖q by the triangle inequality, and that Y =d εY . We also know that
ε is (2, q, 1/

√
q − 1)–hypercontractive.

The idea of this proof (symmetrization of X and using the hypercontractivity of ε) is due
to Talagrand.

By Jensen’s inequality, averaging over the value of X ′ and using EX ′ = 0,

‖a + ηqX‖q ≤ ‖a + ηqY ‖q = ‖a + ηqεY ‖q.

Using hypercontractivity of ε, and where “EZ” means taking the expectation over Z (and
conditioning on everything else),

‖a + ηqεY ‖q ≤

(
EY

[(
Eε

∣∣∣a + ηqεY
√

q − 1
∣∣∣2)q/2

])1/q

=
(
E
[∣∣a2 + η2

qY
2(q − 1)

∣∣q/2
])1/q

= ‖a2 + η2
qY

2(q − 1)‖1/2
q/2

≤
(
a2 + (q − 1)η2

q‖Y 2‖q/2

)1/2

=

(
a2 +

(
‖Y ‖q

2‖X‖q

)2

EX2

)1/2

,

where the second inequality follows from Minkowski’s inequality. Using the definition of ηq

and that ‖Y ‖q ≤ 2‖X‖q, we continue the above chain of inequalities to get that

‖a + ηqX‖q ≤
(
a2 + EX2

)1/2

= ‖a + X‖2,

where the last equality follows from EX = 0. 2
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