STAT 206A: Polynomials of Random Variables

Lecture 13

Lecture date: Oct 11

Scribe: Peter Ralph

13

notation: Where the definition of μ is clear from context, we let $|f|_q = \left(\int |f(x)|^q \mu(dx)\right)^{1/q}$ denote the $L^q(\mu)$ norm. Similarly, let $\langle f, g \rangle = \langle f, g \rangle_{\mu} = \sum f(x)g(x)\mu(dx)$ denote the inner product of $L^2(\mu)$.

Theorem 1 For all p < 2 < q, any discrete probability measure μ whose smallest atom is of size α has the same (2,q)- and (p,2)-hypercontractivity constants as the measure μ_{α} , that assigns mass α and $1 - \alpha$ to 0 and 1, respectively.

Proof:

We will prove the result for the (2, q)-hypercontractivity contants, and the (p, 2) case will follow by duality.

It is easy to show that if μ is $(2, q, \eta)$ -hypercontractive, then so is μ_{α} . Indeed, suppose otherwise. Then by definition, there exists an $f : \{0, 1\} \to \mathbb{R}$ such that $|T_{\eta}f|_{L^{q}(\mu_{\alpha})} > |f|_{L^{2}(\mu_{\alpha})}$, where T_{η} is the Bonami-Bechner operator. Let x be such that $\mu(x) = \alpha$. If we then define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(y) = \begin{cases} f(0) & \text{if } y = x \\ f(1) & \text{o.w. }, \end{cases}$$

then we see that $|g|_{L^p(\mu)} = |f|_{L^p(\mu_\alpha)}$ and $|T_\eta g|_{L^p(\mu)} = |T_\eta f|_{L^p(\mu_\alpha)}$ for all p. However, by $(2, q, \eta)$ -hypercontractivity of μ , $|T_\eta g|_{L^2(\mu)} \leq |g|_{L^2(\mu)}$, which is a contradiction.

To show the converse, we will prove the following. Suppose that μ is not $(2, q, \eta)$ -hypercontractive, and let f_0 maximize $|T_\eta f|_q$ among $\{f : |f|_2 = 1\}$. We will show that f_0 obtains at most (and hence exactly) two values. This will complete the proof of the theorem, since an f_0 taking two values induces a two-point measure μ_β on those values that is not $(2, q, \eta)$ -hypercontractive. Since $\beta \geq \alpha$, and the hypercontractivity constants for μ_γ are monotone in γ , we have that μ_α is not $(2, q, \eta)$ -hypercontractive either.

Exercise 2 (1 point) Show that the hypercontractive constants for μ_{α} is monotone in α .

The proof of the size of the range of f_0 is as follows. Let $I(f) = |T_\eta f|_q^q$, and $J(f) = |f|_2^2$. We wish to use the method of Lagrange multipliers (see www.wikipedia.org/wiki/Lagrange_Multiplier for background), to which end we will think of I and J as acting on the finite-dimensional real vector space of functions $f : \mathbf{spt}(\mu) \to \mathbb{R}$. Note that any linear function on this space can be represented uniquely as $\langle f, \cdot \rangle_{\mu}$ for some appropriate f, so we may write the derivate of, say, I, evaluated at a function g, as $DI(g) = \langle f(g), \cdot \rangle_{\mu}$, for some f depending on g.

By the method of Lagrange multipliers, $DI(f_0) = cDJ(f_0)$, for some constant c. Simple computation reveals that $DJ(f) = 2\langle f, \cdot \rangle_{\mu}$, and the chain rule allows us to also compute

$$DI(f_0) = \langle q(T_\eta f_0)^{q-1}, T_\eta \cdot \rangle_\mu$$
$$= q\eta \langle T_\eta (T_\eta f_0)^{q-1}, \cdot \rangle_\mu,$$

since $(DT_{\eta})f = T_{\eta}$ (here *D* is the derivative from $\mathbb{R}^n \to \mathbb{R}^n$), and T_{η} is self-adjoint with respect to $\langle \cdot, \cdot \rangle_{\mu}$. Since $DI(f_0) = cDJ(f_0)$, by uniqueness, we have that $f_0 = CT_{\eta}(T_{\eta}f_0)^{q-1}$ for some constant *C*.

Let $g_0 = T_\eta f_0 + (1 - \eta) \mathbf{E}(f_0)$, and note that

$$f_0 = \frac{1}{\eta}g_0 - \frac{1-\eta}{\eta}\mathbf{E}(g_0),\tag{1}$$

and also that

$$f_0 = CT_\eta g_0^{q-1} = C(\eta g_0^{q-1} + (1-\eta)\mathbf{E}(g_0^{q-1})).$$
(2)

However, note that for each x, the first equation (1) is linear in $g_0(x)$, while the second equation (2) is strictly convex in $g_0(x)$. A linear function meets a strictly convex function in at most two points, so there are at most two solutions $(g_0(x), f_0(x))$ to (1) = (2), and f_0 takes at most two values.

Now we move on to the notion of hypercontractivity of random variables taking values in a separable Banach space (e.g. \mathbb{R}^n with any of the usual norms), and relate it to our previous definition.

Throughout, we will denote by $|\cdot|$ the norm coming from the Banach space, and define a family of norms $\|\cdot\|_q$ on random variables in this Banach space by $\|Y\|_q := (\mathbf{E}|Y|^q)^{1/q}$.

Definition 3 A random variable X taking values in a separable Banach space V is (p, q, σ) -hypercontractive for some $0 and <math>0 < \sigma < 1$ if, for all $v \in V$,

$$||v + \sigma X||_q \le ||v + X||_p.$$

Theorem 4 For a finite probability space $(\Omega, \mathcal{F}, \mathbf{P})$, the following are equivalent:

• T_{η} is (p,q)-hypercontractive.

- Every mean-zero random variable X taking values in a separable Banach space is (p,q,η) -hypercontractive.
- Every mean-zero real-valued random variable X is (p,q,η) -hypercontractive.

Proof: Trivially, $B \Rightarrow C$.

 $(C \Rightarrow A)$ Assume C, and let $g = f - \mathbf{E}f$, so that by letting $v = \mathbf{E}f$ and $X = \eta g$, we have $|T_{\eta}f|_q = |\mathbf{E}f + \eta g|_q \le |\mathbf{E}f + g|_p = |f|_p$. This shows A.

 $(A \Rightarrow B)$ By the triangle inequality, the function f(x) := |v+x| is convex, so using Jensen's inequality twice and that $\mathbf{E}X = 0$,

$$T_{\eta}f(X) = \eta f(X) + (1 - \eta)\mathbf{E}f(X)$$

$$\geq \eta f(X) + (1 - \eta)f(\mathbf{E}X)$$

$$= \eta f(X) + (1 - \eta)f(0)$$

$$\geq f(\eta X),$$

and hence

$$||v + \eta X||_q = ||f(\eta X)||_q \le ||T_\eta f(X)||_q \le ||f(X)||_p = ||v + X||_p.$$

Exercise 5 (1 point) *Prove this lemma:*

Lemma 6 Let q > 2, $\eta > 0$, and let X be a $(2, q, \eta)$ -hypercontractive random variable such that $X \neq 0$. Then $\mathbf{E}X = 0$, $\mathbf{E}|X|^q < \infty$, and $\eta < (q-1)^{-1/2}$.

The following lemma relates (p, q, η) -hypercontractivity of a random variable X to its' moments.

Lemma 7 Let X be a mean-zero real-valued random variable with $\mathbf{E}|X|^q < \infty$, where q > 2. Then X is $(2, q, \eta_q)$ -hypercontractive, where

$$\eta_q = \frac{\|X\|_2}{\sqrt{q-1}\|X\|_q}.$$

Proof:

Let X' be an independent copy of X, and let Y = X - X', so that Y is symmetric. Let ϵ be a further independent random variable taking values $\{+1, -1\}$ with probability $\frac{1}{2}$ each.

Note that $||Y||_q \leq 2||X||_q$ by the triangle inequality, and that $Y =_d \epsilon Y$. We also know that ϵ is $(2, q, 1/\sqrt{q-1})$ -hypercontractive.

The idea of this proof (symmetrization of X and using the hypercontractivity of ϵ) is due to Talagrand.

By Jensen's inequality, averaging over the value of X' and using $\mathbf{E}X' = 0$,

$$||a + \eta_q X||_q \le ||a + \eta_q Y||_q = ||a + \eta_q \epsilon Y||_q.$$

Using hypercontractivity of ϵ , and where " \mathbf{E}_Z " means taking the expectation over Z (and conditioning on everything else),

$$\begin{aligned} \|a + \eta_q \epsilon Y\|_q &\leq \left(\mathbf{E}_Y \left[\left(\mathbf{E}_\epsilon \left| a + \eta_q \epsilon Y \sqrt{q - 1} \right|^2 \right)^{q/2} \right] \right)^{1/q} \\ &= \left(\mathbf{E} \left[\left| a^2 + \eta_q^2 Y^2 (q - 1) \right|^{q/2} \right] \right)^{1/q} \\ &= \|a^2 + \eta_q^2 Y^2 (q - 1)\|_{q/2}^{1/2} \\ &\leq \left(a^2 + (q - 1) \eta_q^2 \|Y^2\|_{q/2} \right)^{1/2} \\ &= \left(a^2 + \left(\frac{\|Y\|_q}{2\|X\|_q} \right)^2 \mathbf{E} X^2 \right)^{1/2}, \end{aligned}$$

where the second inequality follows from Minkowski's inequality. Using the definition of η_q and that $\|Y\|_q \leq 2\|X\|_q$, we continue the above chain of inequalities to get that

$$||a + \eta_q X||_q \le (a^2 + \mathbf{E} X^2)^{1/2}$$

= $||a + X||_2$,

where the last equality follows from $\mathbf{E}X = 0$. \Box