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Probability: Foundations

Definition
A probability space (Ω,F ,P) consists of

a set Ω of "possible outcomes" called the sample space
a seta F of events, which are subsets of Ω

a probability measure P : F → [0,1] which assigns
probabilities to events in F

aActually, F is a σ-field. See Durrett’s Probability: Theory and Examples for
thorough coverage of the measure-theoretic basis for probability theory.

Example: Rolling a Dice
Consider rolling a fair six-sided dice. In this case,

Ω = {1,2,3,4,5,6}
F = {∅, {1}, {2}, . . . , {1,2}, {1,3}, . . .}

P(∅) = 0,P({1}) =
1
6
,P({3,6}) =

1
3
, . . .



Probability: Random Variables

Definition
A random variable X is an assignment of (often numeric)
values to outcomes ω in the sample space Ω

X is a function of the sample space (e.g., X : Ω→ R)
We write P(X ∈ A) to mean the induced probability that the
value of X falls in a set A

Formally, P(X ∈ A) , P({ω ∈ Ω : X (ω) ∈ A})
X ∼ P means "X has the distribution given by P"

Example Continued: Rolling a Die
Suppose that we bet $5 that our die roll will yield a 2.
Let X be a random variable denoting our winnings:

X : Ω = {1,2,3,4,5,6} → {−5,5}
X = 5 if the die shows 2, and X = −5 if not
P(X ∈ {5}) = 1

6 and P(X ∈ {−5}) = 5
6 .



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :
Bernoulli(p): p ∈ [0,1]; X ∈ {0,1}

P(X = 1) = p,P(X = 0) = 1− p

e.g., X = 1 if biased coin comes up heads, 0 otherwise



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :
Binomial(p,n): p ∈ [0,1],n ∈ N; X ∈ {0, . . . ,n}

P(X = x) =

(
n
x

)
px (1− p)n−x

e.g., X = number of heads in n tosses of a biased coin



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :
Multinomial(p,n): p ∈ [0,1]k ,n ∈ N; X ∈ {0, . . . ,n}k

P(X = x) =
n!

x1! · · · xk !
px1

1 · · · p
xk
k

Generalizes Bernoulli and Binomial to non-binary outcomes
p is a vector of probabilities summing to 1
X is a vector of counts summing to n

e.g., X = number of times each digit rolled in n rolls of a die



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :
Poisson(λ): λ ∈ (0,∞); X ∈ N

P(X = x) =
e−λλx

x!

e.g., X = number of deaths by horse-kicking each year



Probability: From Discrete to Continuous

Definition
The probability mass function (pmf) of a discrete random
variable X is defined as p(x) = P(X = x).

Definition
The cumulative distribution function (cdf) of a random
variable X ∈ Rm is defined for x ∈ Rm as F (x) = P(X ≤ x).

Definition
We say that X has a probability density function (pdf) p if we
can write F (x) =

∫ x
−∞ p(y)dy .

In practice, the continuous random variables with which we
will work will have densities.
For convenience, in the remainder of this lecture we will
assume that all random variables take values in some
countable numeric set, R, or a real vector space.



Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :
Uniform(a,b): a,b ∈ R, a < b; X ∈ [a,b]

p(x) =
1

b − a



Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :
Normal(µ, σ2): µ ∈ R, σ ∈ R++; X ∈ R

p(x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)

Normal distribution can be easily generalized to the
multivariate case, in which X ∈ Rm. In this context, µ
becomes a real vector and σ is replaced by a covariance
matrix.



Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :
Beta, Gamma, and Dirichlet distributions also frequently
arise.



Probability: Distributions
Other Distribution Types

Exponential Family
Encompasses distributions of the form

p(x) = h(x) exp(η(θ)T T (x)− A(θ))

Well-studied, nice analytical properties
Includes many commonly encountered distributions

Binomial(p,n): for fixed n and varying parameter p

P(X = x) =

(
n
x

)
px (1− p)n−x

=

(
n
x

)
exp

(
x log

(
p

1− p

)
+ n log (1− p)

)

Bernoulli, Multinomial, Normal, Poisson, . . .



Probability: Expectation

Intuition: the expectation of random variable is its “average”
value under its distribution

Definition
Formally, the expectation of a random variable X , denoted
E [X ], is its integral with respect to its probability measure P.

If X takes values in some countable numeric set X , then

E [X ] =
∑
x∈X

xP(X = x)

If X ∈ Rm has a density p, then

E [X ] =

∫
Rm

xp(x)dx



Probability: More on Expectation

Properties of Expectation
Expection is linear: E [aX + b] = aE [X ] + b. Also, if Y is
also a random variable, then E [X + Y ] = E [X ] + E [Y ].
Expectation is monotone: if X ≥ Y , then E [X ] ≥ E [Y ]
Probabilities are expectations:

Let 1A equal 1 when the event A occurs and 0 otherwise
E [1A] = P(1A = 1)1 + P(1A = 0)0 = P(1A = 1) = P(A)

Expectations also obey various inequalities, including
Jensen’s, Cauchy-Schwarz, etc.

Variance
The variance of a random variable X is defined as

Var(X ) = E [(X − E [X ])2] = E [X 2]− (E [X ])2

and obeys the following for a,b ∈ R:

Var(aX + b) = a2Var(X ).



Probability: Independence

Intuition: two random variables are independent if knowing the
value of one yields no knowledge about the value of the other

Definition
Formally, two random variables X and Y are independent,
written X ⊥ Y , iff

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all (measurable) subsets A and B in the ranges of X and Y .
If X ,Y have densities pX (x),pY (y), then they are
independent if

pX ,Y (x , y) = pX (x)pY (y)

for all x , y .



Probability: Conditioning

Intuition: conditioning allows us to capture the probabilistic
relationships between different random variables

Definition
For events A and B ∈ F , P(A|B) is the probability that A will
occur given that we know that event B has occurred.

If P(B) > 0, then P(A|B) =
P(A ∩ B)

P(B)

Example: Random variables X and Y

P(X ∈ C|Y ∈ D) =
P(X ∈ C,Y ∈ D)

P(Y ∈ D)

In terms of densities, p(y |x) =
p(x , y)

p(x)
, for p(x) > 0 where

p(x) =
∫

p(x , y)dy .
If X and Y are independent, P(X ∈ C|Y ∈ D) = P(X ∈ C).



Probability: More on Conditional Probability

For any events A and B (e.g., we might have A = {Y ≤ 5}),

P(A ∩ B) = P(A|B)P(B)

Bayes’ Theorem

P(A|B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B|A)P(A)

Equivalently, if P(B) > 0, P(A|B) =
P(B|A)P(A)

P(B)

Bayes’ Theorem provides a means of inverting the "order"
of conditioning



Probability: Conditional Independence

Intuition: conditioning can induce independence

Definition
Formally, two random variables X and Y are conditionally
independent given a third random variable Z , written X ⊥ Y |Z ,
iff

P(X ∈ A,Y ∈ B|Z = z) = P(X ∈ A|Z = z)P(Y ∈ B|Z = z)

for all (measurable) subsets A and B in the ranges of X and Y
and all values z in the range of Z .

In terms of densities, X ⊥ Y |Z if

pX ,Y |Z (x , y |z) = pX |Z (x |z)pY |Z (y |z)

for all x , y , z.



Statistics: Frequentist Basics

Given: Data x1, x2, . . . , xn

Realizations of random variables, X1, . . . ,Xn, generally
assumed independent and identically distributed (i.i.d.)

Goal: Estimate a parameter θ
Some (unknown) value associated with the distribution
generating the data
Our estimate will be a statistic, i.e., a function θ̂(x1, . . . , xn)
of the data

Examples
Given the results of n independent flips of a coin,
determine the probability p with which it lands on heads.
Or, simply determine whether or not the coin is fair.
Find a function that distinguishes digital images of fives
from those of other handwritten digits.



Statistics: Parameter Estimation

Important Question: How do we estimate θ?
Generally, θ indexes a class of probability distributions:
{pθ(x) : θ ∈ Θ}
How do we choose θ̂(x1, . . . , xn) so that pθ̂(x) best reflects
our data?
One answer: maximize the likelihood (or, equivalently,
log likelihood) of the data

`(θ; x1, . . . , xn) = pθ(x1, . . . , xn) =
∏n

i=1 pθ(xi )
ln `(θ; x1, . . . , xn) =

∑n
i=1 ln pθ(xi )

Maximum Likelihood Estimation

θ̂(x1, . . . , xn) = argmax
θ∈Θ

n∏
i=1

pθ(xi) = argmax
θ∈Θ

n∑
i=1

ln pθ(xi)



Statistics: Maximum Likelihood Estimation
Example: Normal Mean

Suppose that our data x1, . . . , xn is real-valued and known
to be drawn i.i.d. from a normal distribution with variance 1
but unknown mean.
Goal: estimate the mean θ of the distribution.
Recall that a univariate N(θ,1) distribution has density
pθ(x) = 1√

2π
exp(−1

2(x − θ)2).

Given data x1, . . . , xn, we can obtain the maximum
likelihood estimate by maximizing the log likelihood w.r.t. θ:

d
dθ

n∑
i=1

ln pθ(xi) ∝
n∑

i=1

d
dθ

[
−1

2
(xi − θ)2

]
=

n∑
i=1

(xi − θ) = 0

⇒ θ̂(x1, . . . , xn) = argmax
θ∈Θ

n∑
i=1

ln pθ(xi) =
1
n

n∑
i=1

xi



Statistics: Bayesian Basics

The Bayesian approach treats parameters as random
variables having distributions.
That is, we maintain probability distributions over possible
parameter values:

1 We have some beliefs about our parameter values θ before
we see any data. These beliefs are encoded in the prior
distribution p(θ).

2 Treating the parameters θ as random variables, we can
write the likelihood of the data X = x as a conditional
probability: p(x |θ).

3 We would like to update our beliefs about θ based on the
data by obtaining p(θ|x), the posterior distribution.
Solution: by Bayes’ theorem,

p(θ|x) =
p(x |θ)p(θ)

p(x)

where
p(x) =

∫
p(x |θ)p(θ)dθ



Statistics: More on the Bayesian Approach

Within the Bayesian framework, estimation and prediction
simply reduce to probabilistic inference. This inference
can, however, be analytically and computationally
challenging.
It is possible to obtain point estimates from the posterior in
various ways, such as by taking the posterior mean

Eθ|X [θ] =

∫
θp(θ|x)dθ

or the mode of the posterior:

argmax
θ

p(θ|x)

Alternatively, we can directly compute the predictive
distribution of a new data point Xnew, having already seen
data X = x :

p(xnew|x) =

∫
p(xnew|θ)p(θ|x)dθ



Statistics: Bayesian Approach for the Normal Mean

Suppose that X |θ ∼ N(θ,1) and we place a prior N(0,1) over θ
(i.e., θ ∼ N(0,1)):

pX |θ(x |θ) =
1√
2π

exp
(
−(x − θ)2

2

)
pθ(θ) =

1√
2π

exp
(
−θ

2

2

)
Then, if we observe X = 1,

pθ|X (θ|1) =
pX |θ(1|θ)pθ(θ)

pX (1)

∝ pX |θ(1|θ)pθ(θ)

=

[
1√
2π

exp
(
−(1− θ)2

2

)][
1√
2π

exp
(
−θ

2

2

)]
∝ 1

.5
√

2π
exp

(
−(θ − .5)2

2(.5)

)
= N(0.5,0.5)



Statistics: Bayesian Prior Distributions

Important Question: How do we select our prior distribution?

Different possible approaches:
Based on actual prior knowledge about the system or data
generation mechanism
Target analytical and computational tractability; e.g., use
conjugate priors (those which yield posterior distributions
in the same family)
Allow the data to have "maximal impact" on the posterior



Statistics: Parametric vs. Non-Parametric Models

All of the models considered so far are parametric
models: they are determined by a fixed, finite number of
parameters.
This can limit the flexibility of the model.
Instead, can permit a potentially infinite number of
parameters which is allowed to grow as we see more data.
Such models are called non-parametric.
Although non-parametric models yield greater modeling
flexibility, they are generally statistically and
computationally less efficient.



Statistics: Generative vs. Discriminative Models

Suppose that, based on data (x1, y1), . . . , (xn, yn), we
would like to obtain a model whereby we can predict the
value of Y based on an always-observed random variable
X .
Generative Approach: model the full joint distribution
P(X ,Y ), which fully characterizes the relationship between
the random variables.
Discriminative Approach: only model the conditional
distribution P(Y |X )

Both approaches have strengths and weaknesses and are
useful in different contexts.



Linear Algebra: Basics

Matrix Transpose
For an m × n matrix A with (A)ij = aij , its transpose is an
n ×m matrix AT with (AT )ij = aji .
(AB)T = BT AT

Matrix Inverse
The inverse of a square matrix A ∈ Rn×n is the matrix A−1

such that A−1A = I.
This notion generalizes to non-square matrices via left-
and right-inverses.
Not all matrices have inverses.
If A and B are invertible, then (AB)−1 = B−1A−1.
Computation of inverses generally requires O(n3) time.



Linear Algebra: Basics

Trace
For a square matrix A ∈ Rn×n, its trace is defined as
tr(A) =

∑n
i=1(A)ii .

tr(AB) = tr(BA)

Eigenvectors and Eigenvalues
Given a matrix A ∈ Rn×n, u ∈ Rn\{0} is called an
eigenvector of A with λ ∈ R the corresponding eigenvalue if

Au = λu

An n × n matrix can have no more than n distinct
eigenvector/eigenvalue pairs.



Linear Algebra: Basics

More definitions
A matrix A is called symmetric if it is square and
(A)ij = (A)ji ,∀i , j .
A symmetric matrix A is positive semi-definite (PSD) if all
of its eigenvalues are greater than or equal to 0.
Changing the above inequality to >, ≤, or < yields the
definitions of positive definite, negative semi-definite, and
negative definite matrices, respectively.
A positive definite matrix is guaranteed to have an inverse.



Linear Algebra: Matrix Decompositions

Eigenvalue Decomposition
Any symmetric matrix A ∈ Rn×n can be decomposed as follows:

A = UΛUT

where Λ is a diagonal matrix with the eigenvalues of A on its
diagonal, U has the corresponding eigenvectors of A as its
columns, and UUT = I.

Singular Value Decomposition
Any matrix A ∈ Rm×n can be decomposed as follows:

A = UΣV T

where UUT = VV T = I and Σ is diagonal.

Other Decompositions: LU (into lower and upper triangular
matrices); QR; Cholesky (only for PSD matrices)



Optimization: Basics

We often seek to find optima (minima or maxima) of some
real-valued vector function f : Rn → R. For example, we
might have f (x) = xT x .
Furthermore, we often constrain the value of x in some
way: for example, we might require that x ≥ 0.
In standard notation, we write

min
x∈X

f (x)

s.t. gi(x) ≤ 0, i = 1, . . . ,N
hi(x) = 0, i = 1, . . . ,M

Every such problem has a (frequently useful)
corresponding Lagrange dual problem which lower-bounds
the original, primal problem and, under certain conditions,
has the same solution.
It is only possible to solve these optimization problems
analytically in special cases, though we can often find
solutions numerically.



Optimization: A Simple Example

Consider the following unconstrained optimization problem:

min
x∈Rn

‖Ax − b‖22 = min
x∈Rn

(Ax − b)T (Ax − b)

In fact, this is the optimization problem that we must solve
to perform least-squares regression.
To solve it, we can simply set the gradient of the objective
function equal to 0.
The gradient of a function f (x) : Rn → R is the vector of
partial derivatives with respect to the components of x :

∇x f (x) =

(
∂f
∂x1

, . . .
∂f
∂xn

)



Optimization: A Simple Example

Thus, we have

∇x‖Ax − b‖22 = ∇x

[
(Ax − b)T (Ax − b)

]
= ∇x

[
xT AT Ax − 2xT AT b + bT b

]
= 2AT Ax − 2AT b
= 0

and so the solution is

x = (AT A)−1AT b

(if (AT A)−1 exists).



Optimization: Convexity

In the previous example, we were guaranteed to obtain a
global minimum because the objective function was
convex.
A twice differentiable function f : Rn → R is convex if its
Hessian (matrix of second derivatives) is everywhere PSD
(if n = 1, then this corresponds to the second derivative
being everywhere non-negative)1.
An optimization problem is called convex if its objective
function f and inequality constraint functions g1, . . . ,gN are
all convex, and its equality constraint functions h1, . . . ,hM
are linear.
For a convex problem, all minima are in fact global minima.
In practice, we can efficiently compute minima for problems
in a number of large, useful classes of convex problems.

1This definition is in fact a special case of the general definition for arbitrary
vector functions.
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