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Probability: Foundations

A probability space (2, 7, P) consists of
@ a set Q of "possible outcomes" called the sample space
@ aset? F of events, which are subsets of

@ a probability measure P : F — [0, 1] which assigns
probabilities to events in F

@Actually, F is a o-field. See Durrett’s Probability: Theory and Examples for
thorough coverage of the measure-theoretic basis for probability theory.

’

Example: Rolling a Dice

Consider rolling a fair six-sided dice. In this case,
Q={1,2,3,4,5,6}
F= {®7{1}7{2}77{172}7{1,3}7}

PW) = 0, P({1}) = 5. P3.61) = 5.
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Probability: Random Variables

A random variable X is an assignment of (often numeric)
values to outcomes w in the sample space Q2
@ X is a function of the sample space (e.g., X : 2 — R)

@ We write P(X € A) to mean the induced probability that the
value of X fallsin a set A

e Formally, P(X € A) £ P({w € Q: X(w) € A})
@ X ~ P means "X has the distribution given by P"

| A\

Example Continued: Rolling a Die

Suppose that we bet $5 that our die roll will yield a 2.
Let X be a random variable denoting our winnings:

e X:Q={1,2,3,4,56} - {-5,5}
@ X =5 if the die shows 2, and X = —5 if not
@ P(X € {5})=%and P(X € {-5}) = 2.




Probability: Common Discrete Distributions

Common discrete distributions for a random variable X:
@ Bernoulli(p): p € [0,1]; X € {0,1}
PX=1)=p,P(X=0)=1-p

e.g., X = 1 if biased coin comes up heads, 0 otherwise



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X:
@ Binomial(p,n): p€[0,1],ne N; X € {0,...,n}

P == (7)o" - P

e.g., X = number of heads in n tosses of a biased coin

A

* p=0.5 and n=20
* p=0.7 and n=20
8 g ® p=0.5 and n=40
f=} []

L] L]
= .
SH eesedoccboene® teves
=]

0 10 20

30 40




Probability: Common Discrete Distributions

Common discrete distributions for a random variable X:
@ Multinomial(p, n): p € [0,1]x,ne N; X € {0,...,n}¥

n

e Generalizes Bernoulli and Binomial to non-binary outcomes
@ p is a vector of probabilities summing to 1
e X is a vector of counts summing to n

e.g., X = number of times each digit rolled in nrolls of a die



Probability: Common Discrete Distributions

Common discrete distributions for a random variable X:
@ Poisson(A): A € (0,00); X € N

e\
P(X =x)= i

e.g., X = number of deaths by horse-kicking each year
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Probability: From Discrete to Continuous

The probability mass function (pmf) of a discrete random
variable X is defined as p(x) = P(X = x).

| A

Definition
The cumulative distribution function (cdf) of a random
variable X € R™ is defined for x € R™ as F(x) = P(X < x).

Definition
We say that X has a probability density function (pdf) p if we
can write F(x) = [*__ p(y)dy.

| A\

V.

@ In practice, the continuous random variables with which we
will work will have densities.

@ For convenience, in the remainder of this lecture we will
assume that all random variables take values in some
countable numeric set, R, or a real vector space.



Probability: Common Continuous Distributions

Common continuous distributions for a random variable X:
@ Uniform(a,b): a,b € R, a< b; X € [a, b]
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Common continuous distributions for a random variable X:
@ Normal(u,0?): p e R, 0 € R,y ; X €R

(x —p)?

1.0

0.8

P02 (X)

0.2

0.0

@ Normal distribution can be easily generalized to the

Probability: Common Continuous Distributions
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Probability: Common Continuous Distributions

Common continuous distributions for a random variable X:

@ Beta, Gamma, and Dirichlet distributions also frequently
arise.
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Probability: Distributions

Other Distribution Types

Exponential Family

@ Encompasses distributions of the form
p(x) = h(x)exp(n(0)" T(x) — A9))

@ Well-studied, nice analytical properties
@ Includes many commonly encountered distributions
e Binomial(p,n): for fixed n and varying parameter p

n

PO =1 = (F)p1-pr

= <Q> exp (xlog <%> + nlog (1 — P))

@ Bernoulli, Multinomial, Normal, Poisson, ...




Probability: Expectation

Intuition: the expectation of random variable is its “average”
value under its distribution

Definition

Formally, the expectation of a random variable X, denoted

E[X], is its integral with respect to its probability measure P.
@ If X takes values in some countable numeric set X, then

EX]=)_ xP(X =x)

XEX

@ If X € R™ has a density p, then

E[X] = /]R’" xp(x)dx




Probability: More on Expectation

Properties of Expectation
@ Expection is linear: E[aX + b] = aE[X] + b. Also, if Y is
also a random variable, then E[X + Y] = E[X] + E[Y].
@ Expectation is monotone: if X > Y, then E[X] > E[Y]
@ Probabilities are expectations:
o Let 14 equal 1 when the event A occurs and 0 otherwise
o E[14] = P(1a=1)1+P(14=0)0=P(14=1) = P(A)
@ Expectations also obey various inequalities, including
Jensen’s, Cauchy-Schwarz, etc.

Variance

The variance of a random variable X is defined as
Var(X) = E[(X — E[X])?] = E[X?] - (E[X])?
and obeys the following for a, b € R:

Var(aX + b) = & Var(X).




Probability: Independence

Intuition: two random variables are independent if knowing the
value of one yields no knowledge about the value of the other

Definition
Formally, two random variables X and Y are independent,
written X L Y, iff

P(X €AY € B)=P(X € AP(Y € B)

for all (measurable) subsets A and B in the ranges of X and Y.

@ If X, Y have densities px(x), py(y), then they are
independent if

px,y(X,¥) = px(X)py(y)

for all x, y.




Probability: Conditioning

Intuition: conditioning allows us to capture the probabilistic
relationships between different random variables

Definition

For events A and B € F, P(A|B) is the probability that A will
occur given that we know that event B has occurred.

o If P(B) > 0, then P(A|B) — %

Example: Random variables X and Y
P(XeC,YeD)
P(Y € D)
p(x. y)
p(x)

@ P(XeClYeD)=

@ In terms of densities, p(y|x) =

p(x) = | p(x,y)dy.
@ If X and Y are independent, P(X € C|Y € D) = P(X € C)

,for p(x) > 0 where

4




Probability: More on Conditional Probability

For any events A and B (e.g., we might have A = {Y < 5}),

P(ANB) = P(AB)P(B)

Bayes’ Theorem

P(AIB)P(B) = P(ANnB) = P(BN A) = P(B|A)P(A)

Equivalently, if P(B) > 0, P(A|B) = %

@ Bayes’ Theorem provides a means of inverting the "order"
of conditioning



Probability: Conditional Independence

Intuition: conditioning can induce independence

Definition

Formally, two random variables X and Y are conditionally
independent given a third random variable Z, written X L Y|Z,
iff

P(XcAYeBZ=z)=P(XeAZ=z)P(YcBZ-=2z)

for all (measurable) subsets A and B in the ranges of X and Y
and all values z in the range of Z.

@ In terms of densities, X L Y|Z if

Px,v|z(X, ¥|2) = px|z(x|2)py|z(y|Z)

forall x,y, z.




Statistics: Frequentist Basics

Given: Data x1, x2,..., Xp

@ Realizations of random variables, Xj, ..., X,, generally
assumed independent and identically distributed (i.i.d.)

Goal: Estimate a parameter 6

@ Some (unknown) value associated with the distribution
generating the data

@ Our estimate will be a statistic, i.e., a function (x4, ..., Xn)
of the data

@ Given the results of nindependent flips of a coin,
determine the probability p with which it lands on heads.

@ Or, simply determine whether or not the coin is fair.

@ Find a function that distinguishes digital images of fives
from those of other handwritten digits.




Statistics: Parameter Estimation

Important Question: How do we estimate 67

@ Generally, 8 indexes a class of probability distributions:
{po(x) : 0 € ©}
@ How do we choose 9(x1 ;- Xn) SO that py(x) best reflects
our data?
@ One answer: maximize the likelihood (or, equivalently,
log likelihood) of the data
o U0 x1,...,Xn) = Pe(X1n, oy Xn) = TT7 Pa(X)
o Inl(6;x1,...,Xn) = i_1Inpa(X;)

Maximum Likelihood Estimation

A

n n
O(x1, ..., xn) = argmax | [ po(x;) = argmax y " In py(x;)
bco g o




Statistics: Maximum Likelihood Estimation

Example: Normal Mean

@ Suppose that our data x, ..., X, is real-valued and known
to be drawn i.i.d. from a normal distribution with variance 1
but unknown mean.

@ Goal: estimate the mean 6 of the distribution.

@ Recall that a univariate N(0, 1) distribution has density
po(x) = = exp(— 1 (x — 0)?).

@ Given data x4, ..., Xx,, we can obtain the maximum
likelihood estimate by maximizing the log likelihood w.r.t. :

n

:0 > Inpp(xi) o< Y :0 [—;(x,- - 0)2] => (x—0)=0
i=1 i=1

=1

=0(x,..., )—argmaxZInpg Xj) = Zx,
bco =



Statistics: Bayesian Basics

@ The Bayesian approach treats parameters as random
variables having distributions.

@ That is, we maintain probability distributions over possible
parameter values:

@ We have some beliefs about our parameter values 6 before
we see any data. These beliefs are encoded in the prior
distribution p(6).

@ Treating the parameters ¢ as random variables, we can
write the likelihood of the data X = x as a conditional
probability: p(x|9).

© We would like to update our beliefs about 6 based on the
data by obtaining p(8|x), the posterior distribution.
Solution: by Bayes’ theorem,

p(6]x) = PXI0)PE)

where



Statistics: More on the Bayesian Approach

@ Within the Bayesian framework, estimation and prediction
simply reduce to probabilistic inference. This inference
can, however, be analytically and computationally
challenging.

@ It is possible to obtain point estimates from the posterior in
various ways, such as by taking the posterior mean

Eyxle] = [ op(olx)at
or the mode of the posterior:
argmax p(6|x)
0

@ Alternatively, we can directly compute the predictive
distribution of a new data point X,ew, having already seen
data X = x:

P(Xnew|X) = / P(Xnew|0)P(0]X) 0



Statistics: Bayesian Approach for the Normal Mean

Suppose that X |0 ~ N(6,1) and we place a prior N(0, 1) over ¢
(i.e., 0 ~ N(0,1)):

_ )2 2
prnt) = e (<P ) ) = e (-

Then, if we observe X =1,

pox(0]1) = P)qe(p1)(|?1)l)39(9)

o< Pxa(110)pe(0)
— )2 2
- [ ()| [mee (2]

exp <— (6 — '5)2> = N(0.5,0.5)

1
SVer



Statistics: Bayesian Prior Distributions

Important Question: How do we select our prior distribution?

Different possible approaches:

@ Based on actual prior knowledge about the system or data
generation mechanism

@ Target analytical and computational tractability; e.g., use
conjugate priors (those which yield posterior distributions
in the same family)

@ Allow the data to have "maximal impact" on the posterior



Statistics: Parametric vs. Non-Parametric Models

@ All of the models considered so far are parametric
models: they are determined by a fixed, finite number of
parameters.

@ This can limit the flexibility of the model.

@ Instead, can permit a potentially infinite number of
parameters which is allowed to grow as we see more data.
Such models are called non-parametric.

@ Although non-parametric models yield greater modeling

flexibility, they are generally statistically and
computationally less efficient.



Statistics: Generative vs. Discriminative Models

@ Suppose that, based on data (x1, y1), ..., (Xn, ¥n), we
would like to obtain a model whereby we can predict the

value of Y based on an always-observed random variable
X.

@ Generative Approach: model the full joint distribution
P(X,Y), which fully characterizes the relationship between
the random variables.

@ Discriminative Approach: only model the conditional
distribution P(Y|X)

@ Both approaches have strengths and weaknesses and are
useful in different contexts.



Linear Algebra: Basics

Matrix Transpose

@ For an m x nmatrix A with (A); = aj, its transpose is an
n x mmatrix AT with (AT); = a;.
e (AB)T =BTAT

v

Matrix Inverse

@ The inverse of a square matrix A € R"<" is the matrix A~
suchthat A=TA = I.

@ This notion generalizes to non-square matrices via left-
and right-inverses.

@ Not all matrices have inverses.
@ If Aand B are invertible, then (AB)~' = B~1A~".
@ Computation of inverses generally requires O(n®) time.

A\




Linear Algebra: Basics

@ For a square matrix A € R™ " its trace is defined as
tr(A) = 2274 (A)ii-
@ tr(AB) = tr(BA)

v

Eigenvectors and Eigenvalues

@ Given a matrix A € R™" u e R™"\{0} is called an
eigenvector of A with A € R the corresponding eigenvalue if

Au = \u

@ An n x nmatrix can have no more than n distinct
eigenvector/eigenvalue pairs.

A\




Linear Algebra: Basics

More definitions

@ A matrix Ais called symmetric if it is square and
(A)ij = (A)i, Vi, .

@ A symmetric matrix A is positive semi-definite (PSD) if all
of its eigenvalues are greater than or equal to 0.

@ Changing the above inequality to >, <, or < yields the
definitions of positive definite, negative semi-definite, and
negative definite matrices, respectively.

@ A positive definite matrix is guaranteed to have an inverse.

V.




Linear Algebra: Matrix Decompositions

Eigenvalue Decomposition

Any symmetric matrix A € R™" can be decomposed as follows:
A= UNUT

where A is a diagonal matrix with the eigenvalues of A on its
diagonal, U has the corresponding eigenvectors of A as its
columns, and UUT = |I.

Singular Value Decomposition

Any matrix A € R™*" can be decomposed as follows:
A=UzV’

where UUT = VVT = | and X is diagonal.

Other Decompositions: LU (into lower and upper triangular
matrices); QR; Cholesky (only for PSD matrices)



Optimization: Basics

@ We often seek to find optima (minima or maxima) of some
real-valued vector function f : R” — R. For example, we
might have f(x) = xx.

@ Furthermore, we often constrain the value of x in some
way: for example, we might require that x > 0.

@ In standard notation, we write

min  f(x)
XexX
st.  g(x)<0,i=1,...)N
hi(x)=0,i=1,....M
@ Every such problem has a (frequently useful)
corresponding Lagrange dual problem which lower-bounds
the original, primal problem and, under certain conditions,
has the same solution.
@ ltis only possible to solve these optimization problems

analytically in special cases, though we can often find
solutions numerically.



Optimization: A Simple Example

@ Consider the following unconstrained optimization problem:

mlllg |Ax — b3 = mln(Ax b)"(Ax — b)
XE n

@ In fact, this is the optimization problem that we must solve
to perform least-squares regression.

@ To solve it, we can simply set the gradient of the objective
function equal to 0.

@ The gradient of a function f(x) : R” — R is the vector of
partial derivatives with respect to the components of x:

of of
BX‘]’aXn

Vif(x) = (



Optimization: A Simple Example

Thus, we have

Vx|lAx — b3

Vy [(Ax — b)T(Ax — b)]

= Yy [xTATAx —2xTATh + bTb}
= 2ATAx—-2A"b

=0

and so the solution is
x=(ATA)'ATb

(if (ATA)~" exists).



Optimization: Convexity

@ In the previous example, we were guaranteed to obtain a
global minimum because the objective function was
convex.

@ A twice differentiable function f : R" — R is convex if its
Hessian (matrix of second derivatives) is everywhere PSD
(if n =1, then this corresponds to the second derivative
being everywhere non-negative)’.

@ An optimization problem is called convex if its objective

function f and inequality constraint functions g4, ..., gy are
all convex, and its equality constraint functions hy, ..., hy
are linear.

@ For a convex problem, all minima are in fact global minima.
In practice, we can efficiently compute minima for problems
in a number of large, useful classes of convex problems.

This definition is in fact a special case of the general definition for arbitrary
vector functions.
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