Fundamentals

Stat 241A/CS 281A: Statistical Learning Theory

Hongwei Li

Based on tutorial slides by Yangqing Jia, Po-Ling Loh, Lester Mackey and Ariel Kleiner

August 29, 2012

Outline

(1) Probability

(2) Statistics
(3) Linear Algebra

4 Optimization

Probability: Foundations

Definition

A probability space (Ω, \mathcal{F}, P) consists of

- a set Ω of "possible outcomes" called the sample space
- a set ${ }^{a} \mathcal{F}$ of events, which are subsets of Ω
- a probability measure $P: \mathcal{F} \rightarrow[0,1]$ which assigns probabilities to events in \mathcal{F}

[^0]
Example: Rolling a Dice

Consider rolling a fair six-sided dice. In this case,

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} \\
& \mathcal{F}=\{\emptyset,\{1\},\{2\}, \ldots,\{1,2\},\{1,3\}, \ldots\} \\
& P(\emptyset)=0, P(\{1\})=\frac{1}{6}, P(\{3,6\})=\frac{1}{3}, \ldots
\end{aligned}
$$

Probability: Random Variables

Definition

A random variable X is an assignment of (often numeric) values to outcomes ω in the sample space Ω

- X is a function of the sample space (e.g., $X: \Omega \rightarrow \mathbb{R}$)
- We write $P(X \in A)$ to mean the induced probability that the value of X falls in a set A
- Formally, $P(X \in A) \triangleq P(\{\omega \in \Omega: X(\omega) \in A\})$
- $X \sim P$ means " X has the distribution given by P "

Example Continued: Rolling a Die

Suppose that we bet $\$ 5$ that our die roll will yield a 2. Let X be a random variable denoting our winnings:

- $X: \Omega=\{1,2,3,4,5,6\} \rightarrow\{-5,5\}$
- $X=5$ if the die shows 2 , and $X=-5$ if not
- $P(X \in\{5\})=\frac{1}{6}$ and $P(X \in\{-5\})=\frac{5}{6}$.

Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :

- Bernoulli $(p): p \in[0,1] ; X \in\{0,1\}$

$$
P(X=1)=p, P(X=0)=1-p
$$

e.g., $X=1$ if biased coin comes up heads, 0 otherwise

Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :

- Binomial $(p, n): p \in[0,1], n \in \mathbb{N} ; X \in\{0, \ldots, n\}$

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

e.g., $X=$ number of heads in n tosses of a biased coin

Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :

- Multinomial $(\mathbf{p}, n): \mathbf{p} \in[0,1]^{k}, n \in \mathbb{N} ; X \in\{0, \ldots, n\}^{k}$

$$
P(X=x)=\frac{n!}{x_{1}!\cdots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

- Generalizes Bernoulli and Binomial to non-binary outcomes
- \mathbf{p} is a vector of probabilities summing to 1
- X is a vector of counts summing to n
e.g., $X=$ number of times each digit rolled in n rolls of a die

Probability: Common Discrete Distributions

Common discrete distributions for a random variable X :

- Poisson $(\lambda): \lambda \in(0, \infty) ; X \in \mathbb{N}$

$$
P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

e.g., $X=$ number of deaths by horse-kicking each year

Probability: From Discrete to Continuous

Definition

The probability mass function (pmf) of a discrete random variable X is defined as $p(x)=P(X=x)$.

Definition

The cumulative distribution function (cdf) of a random variable $X \in \mathbb{R}^{m}$ is defined for $x \in \mathbb{R}^{m}$ as $F(x)=P(X \leq x)$.

Definition

We say that X has a probability density function (pdf) p if we can write $F(x)=\int_{-\infty}^{x} p(y) d y$.

- In practice, the continuous random variables with which we will work will have densities.
- For convenience, in the remainder of this lecture we will assume that all random variables take values in some countable numeric set, \mathbb{R}, or a real vector space.

Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :

- Uniform $(a, b): a, b \in \mathbb{R}, a<b ; X \in[a, b]$

$$
p(x)=\frac{1}{b-a}
$$

Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :

- $\operatorname{Normal}\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma \in \mathbb{R}_{++} ; X \in \mathbb{R}$

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Normal distribution can be easily generalized to the

Probability: Common Continuous Distributions

Common continuous distributions for a random variable X :

- Beta, Gamma, and Dirichlet distributions also frequently arise.

Probability: Distributions

Other Distribution Types

Exponential Family

- Encompasses distributions of the form

$$
p(x)=h(x) \exp \left(\eta(\theta)^{T} T(x)-A(\theta)\right)
$$

- Well-studied, nice analytical properties
- Includes many commonly encountered distributions
- Binomial (p, n) : for fixed n and varying parameter p

$$
\begin{aligned}
P(X=x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\binom{n}{x} \exp \left(x \log \left(\frac{p}{1-p}\right)+n \log (1-p)\right)
\end{aligned}
$$

- Bernoulli, Multinomial, Normal, Poisson, ...

Probability: Expectation

Intuition: the expectation of random variable is its "average" value under its distribution

Definition

Formally, the expectation of a random variable X, denoted $E[X]$, is its integral with respect to its probability measure P.

- If X takes values in some countable numeric set \mathcal{X}, then

$$
E[X]=\sum_{x \in \mathcal{X}} x P(X=x)
$$

- If $X \in \mathbb{R}^{m}$ has a density p, then

$$
E[X]=\int_{\mathbb{R}^{m}} x p(x) d x
$$

Probability: More on Expectation

Properties of Expectation

- Expection is linear: $E[a X+b]=a E[X]+b$. Also, if Y is also a random variable, then $E[X+Y]=E[X]+E[Y]$.
- Expectation is monotone: if $X \geq Y$, then $E[X] \geq E[Y]$
- Probabilities are expectations:
- Let $\mathbf{1}_{A}$ equal 1 when the event A occurs and 0 otherwise
- $E\left[1_{A}\right]=P\left(\mathbf{1}_{A}=1\right) 1+P\left(1_{A}=0\right) 0=P\left(1_{A}=1\right)=P(A)$
- Expectations also obey various inequalities, including Jensen's, Cauchy-Schwarz, etc.

Variance

The variance of a random variable X is defined as

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

and obeys the following for $a, b \in \mathbb{R}$:

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Probability: Independence

Intuition: two random variables are independent if knowing the value of one yields no knowledge about the value of the other

Definition

Formally, two random variables X and Y are independent, written $X \perp Y$, iff

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B)
$$

for all (measurable) subsets A and B in the ranges of X and Y.

- If X, Y have densities $p_{X}(x), p_{Y}(y)$, then they are independent if

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

for all x, y.

Probability: Conditioning

Intuition: conditioning allows us to capture the probabilistic relationships between different random variables

Definition

For events A and $B \in \mathcal{F}, P(A \mid B)$ is the probability that A will occur given that we know that event B has occurred.

- If $P(B)>0$, then $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Example: Random variables X and Y

$$
\text { - } P(X \in C \mid Y \in D)=\frac{P(X \in C, Y \in D)}{P(Y \in D)}
$$

- In terms of densities, $p(y \mid x)=\frac{p(x, y)}{p(x)}$, for $p(x)>0$ where $p(x)=\int p(x, y) d y$.
- If X and Y are independent, $P(X \in C \mid Y \in D)=P(X \in C)$.

Probability: More on Conditional Probability

For any events A and B (e.g., we might have $A=\{Y \leq 5\}$),

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Bayes' Theorem

$$
\begin{gathered}
P(A \mid B) P(B)=P(A \cap B)=P(B \cap A)=P(B \mid A) P(A) \\
\text { Equivalently, if } P(B)>0, P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

- Bayes' Theorem provides a means of inverting the "order" of conditioning

Probability: Conditional Independence

Intuition: conditioning can induce independence

Definition

Formally, two random variables X and Y are conditionally independent given a third random variable Z, written $X \perp Y \mid Z$, iff

$$
P(X \in A, Y \in B \mid Z=z)=P(X \in A \mid Z=z) P(Y \in B \mid Z=z)
$$

for all (measurable) subsets A and B in the ranges of X and Y and all values z in the range of Z.

- In terms of densities, $X \perp Y \mid Z$ if

$$
p_{X, Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z)
$$

for all x, y, z.

Statistics: Frequentist Basics

Given: Data $x_{1}, x_{2}, \ldots, x_{n}$

- Realizations of random variables, X_{1}, \ldots, X_{n}, generally assumed independent and identically distributed (i.i.d.)
Goal: Estimate a parameter θ
- Some (unknown) value associated with the distribution generating the data
- Our estimate will be a statistic, i.e., a function $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ of the data

Examples

- Given the results of n independent flips of a coin, determine the probability p with which it lands on heads.
- Or, simply determine whether or not the coin is fair.
- Find a function that distinguishes digital images of fives from those of other handwritten digits.

Statistics: Parameter Estimation

Important Question: How do we estimate θ ?

- Generally, θ indexes a class of probability distributions: $\left\{p_{\theta}(x): \theta \in \Theta\right\}$
- How do we choose $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ so that $p_{\hat{\theta}}(x)$ best reflects our data?
- One answer: maximize the likelihood (or, equivalently, log likelihood) of the data

$$
\begin{aligned}
& \text { - } \ell\left(\theta ; x_{1}, \ldots, x_{n}\right)=p_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p_{\theta}\left(x_{i}\right) \\
& \text { - } \ln \ell\left(\theta ; x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right)
\end{aligned}
$$

Maximum Likelihood Estimation

$$
\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p_{\theta}\left(x_{i}\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right)
$$

Statistics: Maximum Likelihood Estimation

Example: Normal Mean

- Suppose that our data x_{1}, \ldots, x_{n} is real-valued and known to be drawn i.i.d. from a normal distribution with variance 1 but unknown mean.
- Goal: estimate the mean θ of the distribution.
- Recall that a univariate $N(\theta, 1)$ distribution has density $p_{\theta}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right)$.
- Given data x_{1}, \ldots, x_{n}, we can obtain the maximum likelihood estimate by maximizing the log likelihood w.r.t. θ :

$$
\begin{gathered}
\frac{d}{d \theta} \sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right) \propto \sum_{i=1}^{n} \frac{d}{d \theta}\left[-\frac{1}{2}\left(x_{i}-\theta\right)^{2}\right]=\sum_{i=1}^{n}\left(x_{i}-\theta\right)=0 \\
\quad \Rightarrow \hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{gathered}
$$

Statistics: Bayesian Basics

- The Bayesian approach treats parameters as random variables having distributions.
- That is, we maintain probability distributions over possible parameter values:
(1) We have some beliefs about our parameter values θ before we see any data. These beliefs are encoded in the prior distribution $p(\theta)$.
(2) Treating the parameters θ as random variables, we can write the likelihood of the data $X=x$ as a conditional probability: $p(x \mid \theta)$.
(3) We would like to update our beliefs about θ based on the data by obtaining $p(\theta \mid x)$, the posterior distribution. Solution: by Bayes' theorem,

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

where

$$
p(x)=\int p(x \mid \theta) p(\theta) d \theta
$$

Statistics: More on the Bayesian Approach

- Within the Bayesian framework, estimation and prediction simply reduce to probabilistic inference. This inference can, however, be analytically and computationally challenging.
- It is possible to obtain point estimates from the posterior in various ways, such as by taking the posterior mean

$$
E_{\theta \mid X}[\theta]=\int \theta p(\theta \mid x) d \theta
$$

or the mode of the posterior:

$$
\underset{\theta}{\operatorname{argmax}} p(\theta \mid x)
$$

- Alternatively, we can directly compute the predictive distribution of a new data point $X_{\text {new }}$, having already seen data $X=x$:

$$
p\left(x_{\text {new }} \mid x\right)=\int p\left(x_{\text {new }} \mid \theta\right) p(\theta \mid x) d \theta
$$

Statistics: Bayesian Approach for the Normal Mean

Suppose that $X \mid \theta \sim N(\theta, 1)$ and we place a prior $N(0,1)$ over θ (i.e., $\theta \sim N(0,1)$):

$$
p_{X \mid \theta}(x \mid \theta)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\theta)^{2}}{2}\right) \quad p_{\theta}(\theta)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\theta^{2}}{2}\right)
$$

Then, if we observe $X=1$,

$$
\begin{aligned}
p_{\theta \mid X}(\theta \mid 1) & =\frac{p_{X \mid \theta}(1 \mid \theta) p_{\theta}(\theta)}{p_{X}(1)} \\
& \propto p_{X \mid \theta}(1 \mid \theta) p_{\theta}(\theta) \\
& =\left[\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(1-\theta)^{2}}{2}\right)\right]\left[\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\theta^{2}}{2}\right)\right] \\
& \propto \frac{1}{.5 \sqrt{2 \pi}} \exp \left(-\frac{(\theta-.5)^{2}}{2(.5)}\right)=N(0.5,0.5)
\end{aligned}
$$

Statistics: Bayesian Prior Distributions

Important Question: How do we select our prior distribution?
Different possible approaches:

- Based on actual prior knowledge about the system or data generation mechanism
- Target analytical and computational tractability; e.g., use conjugate priors (those which yield posterior distributions in the same family)
- Allow the data to have "maximal impact" on the posterior

Statistics: Parametric vs. Non-Parametric Models

- All of the models considered so far are parametric models: they are determined by a fixed, finite number of parameters.
- This can limit the flexibility of the model.
- Instead, can permit a potentially infinite number of parameters which is allowed to grow as we see more data. Such models are called non-parametric.
- Although non-parametric models yield greater modeling flexibility, they are generally statistically and computationally less efficient.

Statistics: Generative vs. Discriminative Models

- Suppose that, based on data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, we would like to obtain a model whereby we can predict the value of Y based on an always-observed random variable X.
- Generative Approach: model the full joint distribution $P(X, Y)$, which fully characterizes the relationship between the random variables.
- Discriminative Approach: only model the conditional distribution $P(Y \mid X)$
- Both approaches have strengths and weaknesses and are useful in different contexts.

Linear Algebra: Basics

Matrix Transpose

- For an $m \times n$ matrix A with $(A)_{i j}=a_{i j}$, its transpose is an $n \times m$ matrix A^{T} with $\left(A^{T}\right)_{i j}=a_{j i}$.
- $(A B)^{T}=B^{T} A^{T}$

Matrix Inverse

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is the matrix A^{-1} such that $A^{-1} A=I$.
- This notion generalizes to non-square matrices via leftand right-inverses.
- Not all matrices have inverses.
- If A and B are invertible, then $(A B)^{-1}=B^{-1} A^{-1}$.
- Computation of inverses generally requires $O\left(n^{3}\right)$ time.

Linear Algebra: Basics

Trace

- For a square matrix $A \in \mathbb{R}^{n \times n}$, its trace is defined as $\operatorname{tr}(A)=\sum_{i=1}^{n}(A)_{i j}$.
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Eigenvectors and Eigenvalues

- Given a matrix $A \in \mathbb{R}^{n \times n}, u \in \mathbb{R}^{n} \backslash\{0\}$ is called an eigenvector of A with $\lambda \in \mathbb{R}$ the corresponding eigenvalue if

$$
A u=\lambda u
$$

- An $n \times n$ matrix can have no more than n distinct eigenvector/eigenvalue pairs.

Linear Algebra: Basics

More definitions

- A matrix A is called symmetric if it is square and $(A)_{i j}=(A)_{j i}, \forall i, j$.
- A symmetric matrix A is positive semi-definite (PSD) if all of its eigenvalues are greater than or equal to 0 .
- Changing the above inequality to $>$, \leq, or $<$ yields the definitions of positive definite, negative semi-definite, and negative definite matrices, respectively.
- A positive definite matrix is guaranteed to have an inverse.

Linear Algebra: Matrix Decompositions

Eigenvalue Decomposition

Any symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed as follows:

$$
A=U \wedge U^{T}
$$

where Λ is a diagonal matrix with the eigenvalues of A on its diagonal, U has the corresponding eigenvectors of A as its columns, and $U U^{T}=I$.

Singular Value Decomposition

Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as follows:

$$
A=U \Sigma V^{T}
$$

where $U U^{T}=V V^{T}=I$ and Σ is diagonal.
Other Decompositions: LU (into lower and upper triangular matrices); QR; Cholesky (only for PSD matrices)

Optimization: Basics

- We often seek to find optima (minima or maxima) of some real-valued vector function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For example, we might have $f(x)=x^{T} x$.
- Furthermore, we often constrain the value of x in some way: for example, we might require that $x \geq 0$.
- In standard notation, we write

$$
\begin{array}{cl}
\min _{x \in \mathcal{X}} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, N \\
& h_{i}(x)=0, i=1, \ldots, M
\end{array}
$$

- Every such problem has a (frequently useful) corresponding Lagrange dual problem which lower-bounds the original, primal problem and, under certain conditions, has the same solution.
- It is only possible to solve these optimization problems analytically in special cases, though we can often find solutions numerically.

Optimization: A Simple Example

- Consider the following unconstrained optimization problem:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}=\min _{x \in \mathbb{R}^{n}}(A x-b)^{T}(A x-b)
$$

- In fact, this is the optimization problem that we must solve to perform least-squares regression.
- To solve it, we can simply set the gradient of the objective function equal to 0 .
- The gradient of a function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the vector of partial derivatives with respect to the components of x :

$$
\nabla_{x} f(x)=\left(\frac{\partial f}{\partial x_{1}}, \ldots \frac{\partial f}{\partial x_{n}}\right)
$$

Optimization: A Simple Example

Thus, we have

$$
\begin{aligned}
\nabla_{x}\|A x-b\|_{2}^{2} & =\nabla_{x}\left[(A x-b)^{T}(A x-b)\right] \\
& =\nabla_{x}\left[x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b\right] \\
& =2 A^{T} A x-2 A^{T} b \\
& =0
\end{aligned}
$$

and so the solution is

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

(if $\left(A^{T} A\right)^{-1}$ exists).

Optimization: Convexity

- In the previous example, we were guaranteed to obtain a global minimum because the objective function was convex.
- A twice differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if its Hessian (matrix of second derivatives) is everywhere PSD (if $n=1$, then this corresponds to the second derivative being everywhere non-negative) ${ }^{1}$.
- An optimization problem is called convex if its objective function f and inequality constraint functions g_{1}, \ldots, g_{N} are all convex, and its equality constraint functions h_{1}, \ldots, h_{M} are linear.
- For a convex problem, all minima are in fact global minima. In practice, we can efficiently compute minima for problems in a number of large, useful classes of convex problems.
${ }^{1}$ This definition is in fact a special case of the general definition for arbitrary vector functions.

[^0]: ${ }^{a}$ Actually, \mathcal{F} is a σ-field. See Durrett's Probability: Theory and Examples for thorough coverage of the measure-theoretic basis for probability theory.

