
UC Berkeley
Department of Electrical Engineering and Computer Science

Department of Statistics

EECS 281A / STAT 241A Statistical Learning Theory

Solution to Problem Set 7
Fall 2012

Issued: Tues. Nov. 13, 2012 Due: Thurs. Nov. 29, 2012

Reading: Sampling chapter. Notes on mean field algorithm.

Problem 7.1
Gibbs sampling and mean field: Consider the Ising model with binary vari-

ables Xs ∈ {−1, 1}, and a factorization of the form

p(x; θ) ∝ exp
{∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt
}
. (1)

To make the problem symmetric, assume a 2-D grid with toroidal (donut-
like) boundary conditions, as illustrated in Figure 1(a).

(a) Derive the Gibbs sampling updates for this model. Implement the
algorithm for θst = 0.25 for all edges, and θs = (−1)s for all s ∈
{1, . . . , 49} (using the node ordering in Figure 1(a)). Run a burn-in
period of 1000 iterations (where one iteration amounts to updating
each node once). For each of 5000 subsequent iterations, collect a
sample vector, and use the 5000 samples to form Monte Carlo estimates
µ̂s of the moments E[Xs] at each node. Output a 7× 7 matrix of the
estimated moments. Repeating this same experiment a few times will
provide an idea of the variability in your estimate. Hand in print-outs
of your code, as well as your results.

Solution: Fix a node s ∈ V and let αs = θs +
∑

t∈N (s) θstxt, where
N (s) is the set of neighbors of s. Then the Gibbs update for node s is

Xs =

{
1 w.p. exp{αs}

exp{αs}+exp{−αs}
−1 w.p. exp{−αs}

exp{αs}+exp{−αs}

A sample output of the estimated moment matrix from Gibbs sampling

1

is as follows:

−0.7668 0.5072 −0.6176 0.5552 −0.6028 0.5220 −0.7768
0.5400 −0.4188 0.3964 −0.4232 0.4288 −0.4048 0.5628
−0.5432 0.4312 −0.4432 0.4696 −0.4340 0.3904 −0.5464
0.5772 −0.4212 0.4272 −0.4440 0.4264 −0.4436 0.5884
−0.5836 0.4020 −0.4484 0.4384 −0.3972 0.4268 −0.5608
0.5584 −0.4340 0.4160 −0.4700 0.4240 −0.3748 0.5460
−0.7820 0.4516 −0.7132 0.5244 −0.6328 0.5024 −0.7952

.

(b) Derive the naive mean field updates (based on a fully factorized ap-
proximation), and implement them for the same model. Compute the
average `1 distance 1

49

∑49
i=1 |τs− µ̂s| between the mean field estimated

moments τs, and the Gibbs estimates µ̂s. Hand in print-outs of your
code, as well as your results.

Solution: Taking the naive approach, we want to find

sup
τs∈[−1,1]

{∑
s∈V

θsτs +
∑
st∈E

θstτsτt +
∑
s∈V

H(τs)
}
,

where

H(Xs) = −
(

1 + τs
2

)
log
(

1 + τs
2

)
−
(

1− τs
2

)
log
(

1− τs
2

)
.

Let s ∈ V ; we now want to solve the problem above for τs by holding
(τt, t 6= s) fixed. It is easy to see that the above problem is concave
in τs, so by taking derivative with respect to τs and setting it equal to
0 we obtain

θs +
∑

t∈N (s)

θstτt −
1
2

log
(

1 + τs
1− τs

)
= 0.

Solving the equation above for τs gives us

τs =
exp{2β} − 1
1 + exp{2β}

,

where β = θs +
∑

t∈N (s) θstτt. This is the naive mean field update
for τs. Note the relationship between parts (a) and (b). Namely,
that if Xs is sampled as in part (a) and for each t ∈ N (s) we have
xt = τt = E[Xt], then

E[Xs] =
exp{β} − exp{−β}
exp{β}+ exp{−β}

= τs.

2

A sample output of the estimated moment matrix from the naive mean
field is as follows:

−0.8058 0.5862 −0.6363 0.6196 −0.6077 0.6573 −0.8141
0.5905 −0.4437 0.4576 −0.4570 0.4675 −0.4257 0.5920
−0.6289 0.4585 −0.4861 0.4812 −0.4821 0.4645 −0.6277
0.6203 −0.4596 0.4792 −0.4767 0.4842 −0.4521 0.6218
−0.6308 0.4556 −0.4890 0.4813 −0.4753 0.4802 −0.6287
0.5824 −0.4529 0.4454 −0.4603 0.4868 −0.3507 0.5720
−0.8223 0.5733 −0.6709 0.5985 −0.5654 1.0000 −1.0000

.

In this case the average `1 distance is 0.05921.

1 % Script for Problem 7.1
2

3 k = 7; % width of toroidal graph
4 thetaNodes = (-1).ˆ(1:kˆ2); % potential for each node
5 thetaEdge = 0.25; % constant potential for all edges
6

7 % Generate adjacency matrix
8 adjMat = generateToroidal(7);
9

10 % Run Gibbs sampling and estimate moments
11 gibbsSamples = GibbsSampling(adjMat,thetaNodes,thetaEdge,1000,5000);
12 gibbsMean = mean(gibbsSamples,2);
13 gibbsMatrix = reshape(gibbsMean, [k k])'
14

15 % Run naive mean field
16 naiveEst = NaiveMeanField(adjMat,thetaNodes,thetaEdge);
17 naiveMatrix = reshape(naiveEst, [k k])'
18 dist = mean(abs(gibbsMean-naiveEst));
19 fprintf('Average ell 1 distance is %g.\n', dist);

1 function adjMat = generateToroidal(k)
2 % Generate the adjacency matrix of the k-by-k toroidal graph.
3

4 adjMat = zeros(kˆ2, kˆ2);
5 for i = 1:k
6 for j = 1:k
7 ind = toInd(i,j); % linear index of the pair
8 nbhs = getNeighbors(i,j); % get neighbors of the node
9 for p = 1:length(nbhs)

10 nbh ind = toInd(nbhs{p}(1), nbhs{p}(2));
11 adjMat(ind, nbh ind) = 1;

3

12 end
13 end
14 end
15

16 % Helper function to convert from pair (i,j) to linear
17 % index in {1, ..., kˆ2}
18 function ind = toInd(i,j)
19 ind = (i-1) * k + j;
20 end
21

22 % Helper function to get the neighbors of node (i,j)
23 function neighbors = getNeighbors(i,j)
24 neighbors = {[i-1,j], [i+1,j], [i,j-1], [i,j+1]};
25 if (i == 1), neighbors{1} = [k,j]; end
26 if (i == k), neighbors{2} = [1,j]; end
27 if (j == 1), neighbors{3} = [i,k]; end
28 if (j == k), neighbors{4} = [i,1]; end
29 end
30

31 end

1 function samples = GibbsSampling(...
2 adjMat, thetaNodes, thetaEdge, burnIn, numSamples)
3 % Implement Gibbs sampling for the {-1,+1} Ising model with
4 % constant edge potentials.
5

6 n = size(adjMat,1); % number of vertices
7 samples = zeros(n, numSamples); % placeholder for samples
8 X = ones(n,1); % initial configuration
9 X(rand(n,1) > 0.5) = -1; % randomize

10

11 numIters = burnIn + numSamples;
12 for it = 1:numIters
13 perm = randperm(n); % random ordering of the indices
14 for s = 1:perm % iterate in order
15 Xnbhs = X(adjMat(s,:) 6= 0); % neighbors of s
16 alpha = thetaNodes(s) + thetaEdge * sum(Xnbhs);
17 if (rand < exp(alpha)/(exp(alpha) + exp(-alpha)))
18 X(s) = 1;
19 else
20 X(s) = -1;
21 end
22 end
23 if (it > burnIn)
24 samples(:, it-burnIn) = X; % record sample
25 end
26 end

4

1 function est = NaiveMeanField(adjMat, thetaNodes, thetaEdge)
2 % Implement naive mean field for the Ising model with constant
3 % edge potentials.
4

5 n = size(adjMat,1); % number of vertices
6 eps = 1e-6; % threshold for convergence
7 est = ones(n,1); % initial configuration
8 est(rand(n,1) > 0.5) = -1; % randomize
9 ∆ = 1; % change from previous estimate

10 numIter = 0; % number of iterations so far
11 while (∆ > eps)
12 oldEst = est; % old estimate
13 numIter = numIter + 1;
14 perm = randperm(n); % random ordering of the indices
15 for s = 1:perm % iterate in order
16 estNbhs = est(adjMat(s,:) 6= 0); % neighbors of s
17 beta = thetaNodes(s) + thetaEdge * sum(estNbhs);
18 est(s) = (exp(2*beta) - 1) / (1 + exp(2*beta));
19 end
20 ∆ = norm(est - oldEst, Inf);
21 end
22 fprintf('Naive mean field converges in %d iterations!\n', numIter);

1 7

8 14

43 49

15 21

28

35

4236

29

22

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

E
rr

or

Error in marginals

Coupling strength

BP
Symmetric

(a) (b)

Figure 1: (a) A two-dimensional grid graph with toroidal boundary con-
ditions. (b) Break-down of the sum-product algorithm on the Ising model
on the toroidal grid. For all γ < γ∗, the sum-product algorithm computes
the correct symmetric marginals. Beyond this point, it outputs increasingly
inaccurate answers.

5

Problem 7.2
Neighborhood regression for Gaussian graphical models: In this problem,
we explore properties of jointly Gaussian random vectors that underlie the
success of the neighborhood-based Lasso approach to estimating Gaussian
graphical models (as discussed in lecture).

Let (X1, X2, . . . , Xp) be a zero-mean jointly Gaussian random vector
with positive definite covariance matrix Σ. Letting T = {2, 3, . . . , p}, con-
sider the conditioned random variable Z = (X1 | XT).

(a) Show that there is a vector θ ∈ Rp−1 such that Z = 〈θ, XT 〉 + W
where W is a zero-mean Gaussian variable independent of XT . Hint:
Consider the best linear predictor of X1 given XT .

Solution: As suggested in the hint, we define θ to be the best linear
predictor of X1 given XT :

θ = arg min
γ∈Rp−1

E[(X1 − 〈γ,XT 〉)2]. (2)

Then it is easy to see that W = Z − 〈θ,XT 〉 is a zero-mean Gaussian
random variable independent of XT , for if W still has a nonzero cor-
relation with XT then we can decrease the mean-squared error in (2)
further.

Alternatively, we can use the conditioning formula for multivariate
Gaussian distribution. Recall that since X = (X1, XT) is jointly Gaus-
sian: (

X1

XT

)
∼ N

((
0
0

)
,

(
Σ11 Σ1T

ΣT1 ΣTT

))
,

the random variable Z = (X1 | XT) has the distribution (e.g. see
equations (13.26) and (13.27) in the course reader)

Z ∼ N
(
Σ1TΣ−1

TTXT , Σ11 − Σ1TΣ−1
TTΣT1

)
.

This means we can write

Z = Σ1TΣ−1
TTXT +W = 〈Σ−1

TTΣT1, XT 〉+W

for a random variable W ∼ N
(
0,Σ11 − Σ1TΣ−1

TTΣT1

)
that is indepen-

dent of XT .

(b) Show that θ = (ΣTT)−1ΣT1, where ΣT1 ∈ Rp−1 is the vector of covari-
ances between X1 and XT .

6

Solution: If we use the multivariate Gaussian conditioning approach
in part (a), then we already know that θ = (ΣTT)−1ΣT1. On the other
hand, it is also easy to compute the value of θ if we use the best linear
predictor technique. We can write the objective function in (2) as

L(γ) = E[(X1 − 〈γ,XT 〉)2]

= γ>E[XTX
>
T] γ − 2E[X1X

>
T]γ + E[X2

1]

= γ>ΣTT γ − 2Σ>T1γ + Σ11,

which is a convex quadratic function of γ. Thus, the minimizer θ of L
satisfies the stationary condition

∇L(θ) = 2ΣTT θ − 2ΣT1 = 0,

which gives us θ = (ΣTT)−1ΣT1, as desired.

(c) Letting N(1) = {j ∈ V | (1, j) ∈ E} be the neighborhood set of node
i, show that θj = 0 if and only if j /∈ N(1). Hint: The following
elementary fact could be useful: let A be an invertible matrix, given
in the block-partitioned form

A =
[
A11 A12

A21 A22

]
.

Then letting B = A−1, we have B12 = A−1
11 A12

[
A21A

−1
11 A12 −A22

]−1.

Solution: Recall that from the Hammersley-Clifford theorem applied
to multivariate Gaussian graphical model (e.g. see the solution to
Problem 3.4(b) in Homework 3), the sparsity pattern of the inverse
covariance matrix Λ = Σ−1 encodes the graph structure, i.e. for each
i 6= j ∈ V we have (i, j) /∈ E if and only if Λij = 0. Thus, to apply
this theorem we only need to express θ in terms of Λ, which we do via
block matrix inversion.

Writing Λ in block-partitioned form as

Λ =
(

Λ11 Λ1T

ΛT1 ΛTT

)
,

we find an expression of Σ in terms of the blocks of Λ as follows (see
equation (13.16) in the course reader):

Σ = Λ−1 =
(

Λ−1
11 + Λ−1

11 Λ1T (Λ/Λ11)−1ΛT1Λ−1
11 −Λ−1

11 Λ1T (Λ/Λ11)−1

−(Λ/Λ11)−1ΛT1Λ−1
11 (Λ/Λ11)−1

)
,

7

where (Λ/Λ11) = Λ11−Λ1TΛ−1
TTΛT1 is the Schur complement of Λ with

respect to Λ11. From this we see that ΣT1 = −(Λ/Λ11)−1ΛT1Λ−1
11 and

ΣTT = (Λ/Λ11)−1, which allows us to write θ in terms of Λ:

θ = (ΣTT)−1ΣT1 = −(Λ/Λ11)(Λ/Λ11)−1ΛT1Λ−1
11 = −ΛT1Λ−1

11 .

Thus, for each j 6= 1 the component of θ corresponding to Xj is

θj = −Λ1j

Λ11
.

Therefore, we conclude that θj = 0 if and only if Λ1j = 0, which by
the Hammersley-Clifford theorem is equivalent to the condition that
j /∈ N(1).

Problem 7.3
Sum-product on graphs with cycles In many real-world applications, the
sum-product algorithm is applied to graphs with cycles. Unlike the case
of trees, the sum-product updates are no longer guaranteed to converge, or
to compute the correct marginal distributions. Indeed, the results can be
very surprising! As an illustration of this phenomenon, consider the Ising
model (1) on the toroidal grid (see Figure 1(a)), with θs = 0 for all s ∈ V ,
and θst = γ for all edges (s, t); call this distribution p(x; γ), since it is
parameterized by γ ∈ R.

(a) Show that the single node marginal distributions are uniform for all
choices of γ (that is, P[Xs = 1; γ] = P[Xs = −1; γ] = 0.5).

Solution: The probability distribution now takes the form

p(x; γ) ∝ exp
(
γ
∑

(s,t)∈E

xsxt

)
, x ∈ {−1,+1}49.

Fix a node s, and let x\s = (xt : t 6= s) denote the random variables
corresponding to all other nodes except node s. For simplicity, we
write the exponential term as a function of xs and x\s:

g(xs, x\s; γ) = exp
(
γ
∑

(t,u)∈E

xtxu

)
.

With this notation, the marginal of node s can be written as

p(xs; γ) =
∑
x\s

p(xs, x\s; γ) ∝
∑
x\s

g(xs, x\s; γ),

8

where the summation is over 248 possible configurations of x\s. Now
observe that since the random variables appear in pairs in the function
g, for each xs ∈ {−1,+1} and each configuration of x\s we have

g(xs, x\s; γ) = g(−xs,−x\s; γ).

Moreover, summing over all possible configurations of x\s is equivalent
to summing over all possible configurations of −x\s, so we also have∑

x\s

g(xs, x\s; γ) =
∑
x\s

g(−xs,−x\s; γ) =
∑
x\s

g(−xs, x\s; γ).

Therefore,

P[Xs = 1; γ] =

∑
x\s

g(1, x\s; γ)∑
x\s

g(1, x\s; γ) +
∑

x\s
g(−1, x\s; γ)

=
1
2
,

as desired.

(b) Figure 1(b) shows empirically that there is some critical threshold
γ∗ > 0 such that the sum-product algorithm, when applied to the
distribution p(x; γ), converges to uniform marginal distributions for
all γ ∈ [0, γ∗), but produces inaccurate answers for larger γ. Using
the analytical form of the sum-product updates, prove that there is
some γ∗ that sum-product converges from any initial condition, and
computes the correct uniform marginals for all γ ∈ [0, γ∗). Hint: Since
each node in the model looks like every other node, it is sufficient
to consider a special case of the message-passing updates, in which
the message Mt→s along each edge t → s is the same as every other
message.

Solution: We initialize the messages Mt→s = (Mt→s(1),Mt→s(−1))
on all edges (s, t) to be the same vector m0 = (m0(1),m0(−1)). We
then run the sum-product algorithm with flooding schedule, where at
each iteration all the nodes simultaneously send messages to all their
neighbors. Since the initial messages are the same, this procedure
guarantees that at each iteration the messages across all edges are the
same. Letting mt = (mt(1),mt(−1)) denote the message at time t, we
find that the messages change by the following rule:

mt+1(1) = eγm3
t (1) + e−γm3

t (−1)

mt+1(−1) = e−γm3
t (1) + eγm3

t (−1).
(3)

9

The question then is what values of γ make the messages converge
for any initial message m0. At this point it is important to take a
step back and think about what we mean with “converge”. If we start
with the initial message m0 = (1, 1), then it is easy to see that for
any value of γ ≥ 0, at each iteration we still have mt(1) = mt(−1),
but mt(1) ↑ ∞ as t → ∞; so the messages themselves may diverge.
However, what we ultimately care about is the marginal on each node:

p(xs; γ) =
m4
∞(xs)

m4
∞(1) +m4

∞(−1)
.

Here m∞ denotes the limit of the messages (mt), and we take the
fourth power of the messages because each node has four neighbors.
Thus, we can rescale or normalize the messages as long as the marginals
are preserved. In our cautionary tale above, the ratio m4

t (1)

m4
t (1)+m4

t (−1)
= 1

2

is a constant for all t, so in that sense we want to say that the sum
product algorithm converges.

There are a variety of ways to normalize the messages, but we will
consider the ratio pt = mt(1)/mt(−1); you could also consider other
quantities such as the log ratio or normalize the messages so that
mt(1) +mt(−1) = 1. From (3), we see that the ratio pt evolves by

pt+1 =
mt+1(1)
mt+1(−1)

=
eγm3

t (1) + e−γm3
t (−1)

e−γm3
t (1) + eγm3

t (−1)
=
eγp3

t + e−γ

e−γp3
t + eγ

=
e2γp3

t + 1
p3
t + e2γ

.

Letting fγ : R+ → R+ denote the function fγ(p) = (e2γp3 + 1)/(p3 +
e2γ), we now have the function iteration pt+1 = fγ(pt). If the sequence
(pt) converges, then it necessarily converges to a fixed point of the
function fγ . Note that p = 1 is a fixed point of fγ for all γ ≥ 0, and
when the ratio pt = 1 the marginals are uniform, as required. For
small γ, p = 1 is the only fixed point of fγ , while for larger values
of γ the function fγ has more than one fixed point; see Figure 2(a).
Thus, intuitively, there is a threshold γ∗ such that if 0 ≤ γ < γ∗ then
the function fγ only has one fixed point and the function iteration
converges to the fixed point p→ 1; let us now prove this.

By the Banach fixed-point theorem, a sufficient condition to guarantee
convergence of function iteration is if the function fγ is contractive:

|fγ(p)− fγ(q)| ≤ L|p− q|

for all p, q ∈ R+ and for some constant 0 < L < 1. Intuitively, if
fγ is contractive then the distance between successive points pt are

10

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p

f(p
)

f(p) = p
γ = 0.1
γ = 0.25
γ = 0.5
γ = 0.75

Student Version of MATLAB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.5

1

1.5

2

2.5

γ ∗ = 1
2 log2

γ

g(
γ)

Student Version of MATLAB

(a) (b)

Figure 2: (a) The plot of the function fγ(p) for several different values of
γ. In this case the function fγ only has one fixed point for γ = 0.1, 0.25
and it has three fixed points for γ = 0.5, 0.75. (b) Plot of the function
g(γ) = maxp>0 |f ′γ(p)|. The function g(γ) is increasing and achieves the
value 1 at γ∗ = 1

2 log 2 ≈ 0.3466.

exponentially decreasing to zero. In particular, a contractive function
has a unique fixed point, which can be found via repeated function
iterations starting from an arbitrary point. The contractive property
of fγ is equivalent to saying that fγ is L-Lipschitz with L < 1, which
holds as long as |f ′γ(p)| ≤ L for all p ∈ R+. An easy computation
yields

f ′γ(p) =
3p2(e4γ − 1)
(p3 + e2γ)2

,

which, in particular, shows that f ′γ(p) > 0. Now define

g(γ) = sup
p∈R+

f ′γ(p).

Then the regime of γ that ensures convergence is the set {γ : g(γ) < 1}.
We can evaluate g(γ) by considering the second derivative of fγ :

f ′′γ (p) =
6p(e4γ − 1)(e2γ − p3)

(p3 + e2γ)3
.

From this expression we see that f ′′γ (p) = 0 if and only if p = p∗ :=

11

2−1/3e2γ/3, and that f ′γ achieves its maximum at p = p∗. Therefore,

g(γ) = f ′γ(p∗) =
24/3

3
(e4γ − 1)
e8γ/3

.

We can quickly check that g(γ) is increasing in γ (see Figure 2(b))
and that g(γ) = 1 at γ = 1

2 log 2. Therefore, we conclude that γ∗ =
1
2 log 2 ≈ 0.3466, and the sum-product algorithm correctly computes
the uniform marginals from any initial condition for all γ ∈ [0, γ∗).

12

