
UC Berkeley
Department of Electrical Engineering and Computer Science

Department of Statistics

EECS 281A / STAT 241A Statistical Learning Theory

Solution to Problem Set 6
Fall 2012

Issued: Tues. Oct. 30, 2012 Due: Tues. Nov. 13, 2012

Reading: Chapters 14, 15, 26; Sampling methods chapter (just after Chap.
20)

Problem 6.1
Factor analysis: Consider the factor analysis model

Y = µ+ ΛX +W

where X ∼ N(0, I) is a d-dimensional Gaussian; µ ∈ Rn is a mean vector;
W ∼ N(0, σ2I) is an n-dimensional Gaussian; and Λ ∈ Rn×d is the factor
matrix. From the course website, you can download the ASCII format files
Y.dat and Lambda.dat, containing an observation vector y ∈ R121 and a
121× 5 factor matrix Λ (i.e., d = 5 and n = 121).

(a) Assuming that µ = 0 and σ2 = 0.25, compute the conditional mean
vector E[X|y] and covariance matrix cov[X|y]. What does this esti-
mate tell you about which factors were most heavily involved in gen-
erating y?

Solution: The random variables (X,Y) are jointly zero-mean Gaus-
sian (since µ = 0) with covariance matrix Σ with block partitions

ΣXX = cov(X,X) = I,

ΣXY = cov(X,Y) = cov(X,ΛX +W) = Λ>,

ΣY X = Σ>XY = Λ,

ΣY Y = cov(ΛX +W,ΛX +W) = ΛΛ> + σ2I.

Therefore, we know that the conditional random variable (X | Y) is
also Gaussian with mean

E[X | Y] = ΣXY Σ−1
Y Y Y = Λ>(ΛΛ> + σ2I)−1Y

and covariance

cov(X | Y) = ΣXX − ΣXY Σ−1
XY ΣY X = I − Λ>(ΛΛ> + σ2I)−1Λ.

1

With the provided values of Λ, Y , and σ2 = 0.25, we find that E[X | Y]
is equal to (

0.1136 0.0703 −0.1914 2.1110 2.1267
)>

and cov(X | Y) is equal to
2.8642× 10−3 −2.2109× 10−3 −2.2109× 10−3 −2.2109× 10−3 −2.2109× 10−3

−2.2109× 10−3 2.4385× 10−2 −4.9023× 10−6 −4.9023× 10−6 −4.9023× 10−6

−2.2109× 10−3 −4.9023× 10−6 2.4385× 10−2 −4.9023× 10−6 −4.9023× 10−6

−2.2109× 10−3 −4.9023× 10−6 −4.9023× 10−6 2.4385× 10−2 −4.9023× 10−6

−2.2109× 10−3 −4.9023× 10−6 −4.9023× 10−6 −4.9023× 10−6 2.4385× 10−2

 .

Note that the conditional distribution (X | Y) is our best guess of the
process that generated the observed data Y . In particular, if E[X | Y]
is large in certain entries, this means we are estimating that those
factors were significant, and the conditional variance cov(X | Y) tells
us how certain we are about those estimates.

(b) What is the relation between E[X|y] and the MAP estimate of X given
Y = y?

Solution: As noted in part (a), the conditional distribution (X | Y)
is Gaussian, so the MAP estimate of X given Y = y is equal to the
conditional expectation E[X | y].

Problem 6.2
Model selection for curve-fitting Suppose that we are interested in fitting

curves to noisy data; in particular, consider the polynomial regression model
linking the response variable y ∈ R to the covariate x ∈ R via

y =
D∑

k=1

βkx
k + w, (1)

where w ∼ N(0, 1) is Gaussian noise. One model selection problem is that of
choosing the appropriate degree D of this polynomial fit, which we explore
in this problem.

(a) The course website has two ASCII files Ymodel.dat and Xmodel.dat,
containing samples {xi, yi}ni=1 with n = 100. For d = 1, 2, . . . , 10,
fit the model (1) to the data by minimizing the least squares loss

2

L(β) = 1
2n

∑n
i=1

{
yi −

∑d
k=1 βk(xi)k

}2. For which choice of d is this
cost function smallest? On the same figure, plot the original data and
the models fitted to the data for d = 1, 2, 3, 4.

Solution: Given d = 1, . . . , 10, let

Y =

y1

· · ·
yn

 , X(d) =

x1 x2
1 · · · xd

1

· · · · · ·
xn x2

n · · · xd
n

 , β(d) =

β1

· · ·
βd

 .

Then the cost function Ld(β(d)) can be written as

Ld(β(d)) =
1

2n

n∑
i=1

(
yi −

d∑
k=1

βkx
k
i

)2
=

1
2n
‖Y −X(d)β(d)‖22,

and thus by taking the derivative of Ld with respect to β(d), we see
that the cost function is minimized by

β∗(d) = (X>(d)X(d))
−1X>(d)Y,

which can be computed with β∗(d) = (X>(d)X(d))\X>(d)Y in MATLAB.

The resulting cost functions are as follows:

d 1 2 3 4 5
Ld(β∗(d)) 30.435 17.196 4.9210 4.9154 4.8520 (×10−3)

d 6 7 8 9 10
Ld(β∗(d)) 4.7384 4.7378 4.7363 4.7238 4.6987 (×10−3)

We see that the cost function is smallest when d = 10, which is to be
expected since using a higher degree polynomial gives us more power
to fit the data better. However, it is also prone to overfitting, since if
the degree is too high then we will just be fitting noise instead of the
true structure of the data. Indeed, we see that the cost function re-
mains essentially constant once we use a third-degree polynomial, and
a visual inspection of the data clearly suggests that the data are gen-
erated from a cubic polynomial. Figure 1 shows the plot of the data,
along with the fitted polynomials for d = 1, 2, 3, 4. The polynomial
with d = 4 is very close to the polynomial with d = 3.

(b) Show that the AIC method, when applied to this problem, reduces to
choosing the degree d̂ that minimizes L(β̂[d]) + d/n, where β̂[d] is the

3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

d = 1
d = 2
d = 3
d = 4

Student Version of MATLAB

Figure 1: Fitted polynomials with degree at most 4.

fitted set of parameters of the polynomial with degree d. Implement
this model selection criterion for this data set, where d ranges over
{1, 2, . . . , 10}. What d̂ is chosen by the procedure?

Solution: Under the Gaussian model assumption, the log likelihood
of the data is precisely −nL(β). The AIC attempts to find d that
minimizes the penalized negative log likelihood:

AIC = nL(β̂[d]) + d,

or equivalently, we want to minimize L∗d = L(β̂[d])+d/n. The resulting
regularized costs are shown in the table below. In this case we still
choose the polynomial with degree d = 3.

d 1 2 3 4 5
L∗d 4.0435 3.7196 3.4921 4.4915 5.4852 (×10−2)
d 6 7 8 9 10
L∗d 6.4738 7.4738 8.4736 9.4724 10.4698 (×10−2)

(c) Given the model β̂ = β̂[d̂] chosen in part (b) and a new observed

4

covariate x, one can generate a predicted response ŷ as

ŷ =
bd∑

k=1

β̂kx
k.

The course website also contains two ASCII files Ynew.dat and Xnew.dat
with m = 500 new samples. Using the samples in Xnew.dat, generate
predictions ŷi, i = 1, . . . ,m, and then compute the prediction error∑m

i=1(ŷi − yi)2.

Solution: We compute the predicted third-degree polynomial re-
sponse ỹ using the computed β̂[3] from part (b), giving us the plot
in Figure 2, and the prediction error is

m∑
i=1

(yi − ỹi)2 = 5.1013.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Student Version of MATLAB

Figure 2: Plot of the new data and the fitted third-degree polynomial.

(d) Repeat part (c) for using the full model fit β̂[10] with all D = 10
parameters. Is the prediction error of the full model higher/lower
than your fitted model?

5

Solution: We repeat part (c) using β̂[10], giving us the plot in Fig-
ure 3, and the prediction error is now

m∑
i=1

(yi − ỹi)2 = 5.4406.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Student Version of MATLAB

Figure 3: Plot of the new data and the fitted tenth-degree polynomial.

We see that now the prediction error is larger than the case d = 3 in
part (c). This shows that the low training error of the d = 10 model
actually overfits the data, and hence does not generalize well.

1 % Script for Problem 6.2
2

3 load Xmodel.dat
4 load Ymodel.dat
5

6 %% Part (a)
7 % Construct data matrices
8 deg = 10; % maximum degree to fit
9 Y = Ymodel;

10 X = Xmodel(:, ones(1,deg));

6

11 for d = 2:deg
12 X(:,d) = X(:,d).ˆd;
13 end
14

15 % Compute least square solution for each d
16 betas = cell(deg,1);
17 cost = zeros(deg,1);
18 for d = 1:deg
19 betas{d} = X(:,1:d)\Y;
20 cost(d) = sum((Y-X(:,1:d)*betas{d}).ˆ2);
21 end
22

23 % Find minimum cost
24 [min cost, i cost] = min(cost);
25

26 % Plot data
27 figure;
28 scatter(Xmodel,Ymodel,25,'k','x');
29 hold all;
30 h1 = plot(Xmodel, X(:,1:1)*betas{1}, '-k');
31 h2 = plot(Xmodel, X(:,1:2)*betas{2}, '--r');
32 h3 = plot(Xmodel, X(:,1:3)*betas{3}, '-.b');
33 h4 = plot(Xmodel, X(:,1:4)*betas{4}, ':k');
34 legend([h1,h2,h3,h4], {'d = 1', 'd = 2', 'd = 3', 'd = 4'});
35 axis([-1 1 -0.42 0.62]);
36

37

38 %% Part (b)
39

40 % Compute regularized cost
41 reg cost = cost + (1:deg)';
42

43 % Find minimum of regularized cost
44 [min reg, i reg] = min(reg cost);
45

46

47 %% Part (c)
48

49 load Xnew.dat
50 load Ynew.dat
51

52 % Compute predicted response and error with d = 3
53 Ypred = Xnew*betas{3}(1) + Xnew.ˆ2*betas{3}(2) ...
54 + Xnew.ˆ3*betas{3}(3);
55 Yerr = sum((Ynew-Ypred).ˆ2);
56

57 % Plot new data and the fitted polynomial
58 figure;
59 scatter(Xnew,Ynew,25,'k','x');

7

60 hold all;
61 plot(Xnew,Ypred,'-r','LineWidth',2);
62

63

64 %% Part (d)
65

66 % Compute predicted response and error with d = 10
67 Ypred d = 0;
68 for d = 1:10
69 Ypred d = Ypred d + Xnew.ˆd*betas{10}(d);
70 end
71 Yerr d = sum((Ynew-Ypred d).ˆ2);
72

73 % Plot new data and the fitted polynomial
74 figure;
75 scatter(Xnew,Ynew,25,'k','x');
76 hold all;
77 plot(Xnew,Ypred d,'-r','LineWidth',2);

Problem 6.3
Accept/reject sampling. Suppose that we want to sample from a random
variable X with density

pX(x) =

{
cx(1− x) for x ∈ [0, 1]
0 otherwise.

,

where c > 0 is an appropriate constant.

(a) Suppose that you have a block-box routine to draw samples Y from a
uniform distribution on [0, 1]. Describe how to perform accept-reject
sampling to generate samples X ∼ pX .

Solution: We need to find a tractable distribution g(x) with the
property that, for some k, kg(x) ≥ pX(x) for x ∈ supp{X}. In this
case, the support of pX(x) is the interval [0, 1], so we can choose g(x) to
be the uniform distribution over [0, 1]. Since

∫ 1
0 x(1− x) = 1

6 , we have
that the constant c in pX(x) is equal to 6, giving pX(x) a maximum
value of 3

2 . Therefore, we can choose k = 3
2 and perform rejection

sampling as follows:

1. Sample Y ∼ Uniform[0, 1].

2. Sample U ∼ Uniform[0, 1].

• If U > 1
kpX(Y), reject Y and return to step 1.

• Otherwise, accept and return Y as a sample from pX .

8

(b) Suppose that you standardize your sampler so that, conditioned on
the event Y = 1/2, it accepts with probability 1/2. Implement this
version of the sampler, and plot the histogram of n = 10000 randomly
drawn samples. Hand in this histogram, and your code. (Be sure to
document your code, explaining what you are doing.)

Solution: In order to satisfy the given condition, we choose k = 3
instead of k = 3

2 as above. With this threshold, we have the desired
acceptance probability conditioned on the event Y = 1/2:

P(accept Y | Y = 1/2) = P
(
U ≤ 1

3
pX(Y)

∣∣∣ Y =
1
2

)
=

1
3
pX(1/2) =

1
2
.

We implement this version of the sampler in MATLAB (code given
below), and draw n = 10000 samples. The histogram (on 100 bins) of
the samples is shown in Figure 4, along with the curve of the density
pX (on rescaled axis so the scales match). In this case, the average
number of uniform samples needed to draw one sample is

T = 3.0039.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Sample histogram
True density

Figure 4: Histogram of n = 10000 randomly drawn samples and the
(rescaled) density.

9

(c) Let T denote the random number of uniform samples that must be
drawn in order for the algorithm to output one sample. Compute E[T],
and compare this theoretical mean to the empirical mean over your
n = 10000 samples. (Note: Your code will need to record the number
of uniform samples that were generated for each of the n = 10000
samples in (b)).

Solution: If we accept the first sample that we generate, then T = 1;
otherwise, we have used one trial and we have to repeat the procedure
from the beginning. Thus, we have the equation

E[T] = P(accept) · 1 + P(reject)
(
1 + E[T]

)
=⇒ E[T] =

P(accept) + P(reject)
1− P(reject)

=
1

P(accept)
.

Note that

P(accept) = P
(
U ≤ 1

3
pX(Y)

)
=
∫ 1

0
P
(
U ≤ 1

3
pX(Y)

∣∣∣ Y = y
)
dy

=
∫ 1

0

1
3
pX(y) dy =

1
3
,

so we conclude that
E[T] = 3.

Thus, the empirical average T = 3.0039 from part (b) is very close to
the true mean E[T] = 3.

1 function [samples num tries] = sample(n)
2 % Rejection sampling algorithm for Problem 6.3(b)
3

4 samples = zeros(n,1); % generated samples
5 num tries = zeros(n,1); % number of trials for each sample
6

7 for i = 1:n
8 % Generate the i-th sample
9 accept = 0; % whether we have found an accepted sample

10 tries = 0; % number of tries so far
11

12 while (accept==0)
13 y = rand;
14 u = rand;
15 if (u ≤ 2*y*(1-y))
16 accept = 1; % accept y

10

17 end
18 tries = tries + 1;
19 end
20

21 % Record results
22 samples(i) = y;
23 num tries(i) = tries;
24 end

1 % Script for Problem 1(b)
2

3 % Generate samples
4 n = 10000; % number of samples
5 [samples num tries] = sample(n);
6 fprintf('Average number of trials = %.4f\n', ...
7 mean(num tries));
8

9 % Plot histogram and density
10 bins = 100; % number of bins used
11 hist(samples, bins);
12 set(findobj(gca,'Type','patch'), 'FaceColor',' r', ...
13 'EdgeColor', 'w');
14 hold on;
15 x = 0:1/bins:1;
16 plot(x, (n/bins)*6*x.*(1-x),'b','LineWidth',2);
17 legend({'Sample histogram', 'True density'});

Problem 6.4
Cautionary tale about importance sampling: Suppose that we wish to esti-

mate the normalizing constant Z(p) of a Gaussian density p(·) ∼ N (0, σ2
p).

Given i.i.d. samples y1, . . . , yn from a standard normal q(·) ∼ N (0, 1), con-
sider the importance sampling estimate

Ẑ =
1
n

n∑
i=1

p∗(yi)
q(yi)

where p∗(y) = exp(− 1
2σ2

p

y2).

(a) Show that Ẑ is an unbiased estimator of Zp.

Solution: Let f(y) = p∗(y)/q(y), and let Y be a random variable
sampled from q. Since y1, . . . , yn ∼ q i.i.d., we have

E[Ẑ] =
1
n

n∑
i=1

E[f(yi)] = E[f(Y)] =
∫ ∞
−∞

p∗(y)
q(y)

q(y)dy =
∫ ∞
−∞

p∗(y)dy = Zp.

11

(b) Letting f(y) = p∗(y)/q(y), show that var(Ẑ) = var(f(Y))
n whenever

var(f(Y)) is finite. For what values of σ2
p is this variance actually

finite?

Solution: Since y1, . . . , yn ∼ q i.i.d., we have

var(Ẑ) =
1
n2

n∑
i=1

var(f(yi)) =
1
n

var(f(Y))

whenever var(f(Y)) <∞. Now, since

var(f(Y)) = E[f(Y)2]− E[f(Y)]2 = E[f(Y)2]− Z2
p ,

we see that var(f(Y)) is finite if and only if E[f(Y)2] is. Note that

E[f(Y)2] =
∫ ∞
−∞

(p∗(y))2

q2(y)
q(y) dy =

√
2π
∫ ∞
−∞

exp
(
y2

2
− y2

σ2
p

)
dy.

Therefore, var(f(Y)) <∞ if and only if σp < 2.

12

