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Problem 5.1

EM algorithm for hidden Markov models

(a) Implement the EM algorithm for HMMs with Gaussian emission prob-
abilities p(yt | xt), where yt ∈ R

2 and xt ∈ {0, 1, . . . ,m− 1}. Restrict
the covariance matrices to be isotropic (i.e., Σ = σ2I).

(b) Fit an HMM with m = 4 states to the two-dimensional data in hmm-
gauss.dat and evaluate the log likelihood on the training and test data
in hmm-test.dat. Plot the data together with the means of the com-
ponent densities.

(c) Fit a Gaussian mixture model with 4 states to the same data (again
with isotropic covariance matrices σ2I). Compare the performance
with that of the HMM.

Problem 5.2

EM and missing values: Suppose you have a random sample of twins and
are interested in studying identical twins. However, you observe only:

• m ≡ the total number of male twins (both identical and fraternal)

• f ≡ the total number of female twins, and

• b ≡ the number of twins of opposite gender.

Let θ be the probability that a pair of twins are identical. Assume that,
given identical twins, the probability the twins are male is p. Given fraternal
twins, assume the number of males is Binomial(2, q).

Give an algorithm for calculating the MLEs for θ, p, and q. (Hint : If
you knew exactly how many identical male and female twins there are, then
the MLEs would be easy to calculate.)
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Problem 5.3

(Social network analysis and IPF:) Frank is studying dependencies in voting
patterns of a collection of d US senators. For any given bill, he collects a
vector x ∈ {0, 1}d, where xi = 1 means that senator i voted yes on that
bill. He models the random vector (X1, X2, . . . , Xd) as a pairwise Markov
random field

Pθ(x1, x2, . . . , xd) ∝
∏

(s,t)∈E

exp(θst(xs, xt)).

(a) For a set d = 4 senators, the data file Pairwise.dat contains a 4× 30
matrix, summarizing the data from n = 30 bills that were voted on
in the senate. Implement and apply the IPF updates to estimate the
model parameters for each of the following graphs: (i) the graph with
edge set E = {(12), (23), (34), (14)}; and (ii) the graph with edge set
E = {(12), (23), (13), (14)}; and (iii) the fully connected graph with
all

(
4
2

)
edges.

(b) Of models (i) and (ii), which model has a higher likelihood?

(c) Of all three models (i), (ii) and (iii), which has the highest likelihood?
Do you think that it is the “best” model?

Problem 5.4

Model selection for trees: Recall that for a given tree T with edge set E(T ),
the MLE for the exponential parameters takes the form

θ̂s(xs) = log µ̂s(xs) for all s ∈ V , and

θ̂st(xs, xt) = log
µ̂st(xs, xt)

µ̂s(xs)µ̂t(xt)
for all (s, t) ∈ E(T ).

Here µ̂ are the empirical marginals computed from the data (e.g., µ̂st(j, k) =
1
n

∑n
i=1 Ist;jk(xis, xit)), and we assume that they take strictly positive values.

(a) Define the rescaled log likelihood ℓ(θ) = 1
n

∑n
i=1 logPθ(xi·). Letting

θ̂(T ) denote the MLE for trees, show that ℓ(θ̂(T )) depends on the
empirical marginals only via

Singleton entropy: H(µ̂s) = −
∑

xs

µ̂s(xs) log µ̂s(xs) ∀ s ∈ V , and

Joint edge entropy: H(µ̂st) = −
∑

xs,xt

µ̂st(xs, xt) log µ̂st(xs, xt) ∀ (s, t) ∈ E(T ).
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(b) In the model selection problem for trees, the goal is to choose, from all
trees on d nodes, the highest likelihood tree i.e., T̂ ∈ argmaxT ℓ(θ̂(T )).
Show how this problem can be cast as a maximum weight spanning
tree calculation. This is important, because it allows us to select
the best tree by simple algorithms. (Hint: The mutual information
I(µ̂st; µ̂s, µ̂t) = H(µ̂s) + H(µ̂t) − H(µ̂st) should be relevant in your
calculations.)

(c) Use the technique from (b) to select the best fitting tree for the data
in Pairwise.dat.
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