
UC Berkeley
Department of Electrical Engineering and Computer Science

Department of Statistics

EECS 281A / STAT 241A Statistical Learning Theory

Solution to Problem Set 5
Fall 2012

Issued: Tues. Oct. 16, 2012 Due: Tues. Oct. 30, 2012

Reading: Chapters 9, 10, 11, 12

Problem 5.1
EM algorithm for hidden Markov models

(a) Implement the EM algorithm for HMMs with Gaussian emission prob-
abilities p(yt | xt), where yt ∈ R2 and xt ∈ {0, 1, . . . ,m− 1}. Restrict
the covariance matrices to be isotropic (i.e., Σ = σ2I).

Solution: Following equations (12.48)–(12.50) in the book with emis-
sion probability

p(yt | xt = i) =
1

2πσ2
i

exp
(
−(yt − µi)>(yt − µi)

2σ2
i

)
,

we can write the complete log likelihood of the data as

`(θ;x, y) = log p(x0) +
T−1∑
t=0

log p(xt+1 | xt) +
T−1∑
t=0

log p(yt | xt)

=
M∑
i=1

qi0 log πi +
T−1∑
t=0

M∑
i,j=1

qitq
j
t+1 log aij

+
T∑
t=0

M∑
i=1

qit

(
− log 2π − log σ2

i −
1

2σ2
i

(yt − µi)>(yt − µi)
)
.

Note that there is no 1/2 in front of the log 2π and log σ2
i since the

Gaussians are 2-dimensional. This affected some people’s M-step for
updating the σ2’s, and caused their σ2 updates to go to infinity.

We see that for the E-step we need to calculate γit = p(xt = i | y, θ(p))
and ξi,jt,t+1 = p(xt = i, xt+1 = j | y, θ(p)). We compute these using the
forward-backward algorithm, as described in Chapter 12.

The M-step for updating A is the same as in the book. The M-step
for updating the mean and covariance parameters is identical to the

1

M-step for a Gaussian (non HMM) mixture model. The M-steps are
thus:

π̂
(p+1)
i = γi0

â
(p+1)
ij =

∑T−1
t=0 ξi,jt,t+1∑T−1
t=0 γit

µ̂
(p+1)
i =

∑T
t=0 γ

i
tyt∑T

t=0 γ
i
t

σ̂2
i

(p+1)
=
∑T

t=0 γ
i
t(yt − µ̂(p+1)

i)>(yt − µ̂(p+1)
i)

2
∑T

t=0 γ
i
t

.

All code for this problem set is attached at the end of this document.

(b) Fit an HMM with m = 4 states to the two-dimensional data in hmm-
gauss.dat and evaluate the log likelihood on the training and test data
in hmm-test.dat. Plot the data together with the means of the com-
ponent densities.

Solution: We run the EM algorithm for 5 trials (with random ini-
tializations) and choose the highest log likelihood of the training data.
We then compute the log likelihood of the test data using the result-
ing parameters. The plots of the training and test data are shown in
Figure 1, along with the component means and the circles indicating
one standard deviation away from the mean. We also do the same
procedure for the Gaussian mixture model in part (c) below; the plots
are also shown in Figure 1.

The resulting estimated parameters for HMM are:

π =


0
0
1
0

 , σ2 =


0.9902
0.9966
0.8624
1.0268

 , µ =


1.9896 -1.9655
-2.0398 1.9596
1.9667 2.0889
-1.9979 -2.1501

 ,

A =


0.7266 0.0742 0.0543 0.1448
0.1332 0.6289 0.1161 0.1217
0.1211 0.0833 0.6524 0.1432
0.0870 0.0956 0.0994 0.7180

 .

2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Training data, HMM
Log likelihood = −3700.4645

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Test data, HMM
Log likelihood = −3686.4993

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Training data, Gaussian mixture
Log likelihood = −4064.0873

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Test data, Gaussian mixture
Log likelihood = −4142.7950

Figure 1: Results of the HMM and Gaussian mixture models.

3

(c) Fit a Gaussian mixture model with 4 states to the same data (again
with isotropic covariance matrices σ2I). Compare the performance
with that of the HMM.

Solution: The complete log likelihood for the Gaussian mixture model
is

`(θ;x, y) =
T∑
t=0

M∑
i=1

xit log πi −
T∑
t=0

M∑
i=1

xit
(yt − µi)>(yt − µi)

2σ2
i

−
T∑
t=0

M∑
i=1

xit log σ2
i − T log(2π),

so the expected complete log likelihood is

E[`(θ;x, y)] =
T∑
t=0

M∑
i=1

γit log πi −
T∑
t=0

M∑
i=1

γit
(yt − µi)>(yt − µi)

2σ2
i

−
T∑
t=0

M∑
i=1

γit log σ2
i − T log(2π).

E step. The posterior probabilities are

γit = p(xt = i | yt) =
πi

1
2πσ2

i
exp

(
− (yt−µi)

>(yt−µi)
2σ2

i

)
∑M

j=1 πj
1

2πσ2
j

exp
(
− (yt−µj)>(yt−µj)

2σ2
j

) .

M step. By the same argument as in part (a), we have the update
rules

π̂(p+1) =
1
T

T∑
t=0

γt

µ̂
(p+1)
i =

∑T
t=0 γ

i
tyt∑T

t=0 γ
i
t

σ̂2
i

(p+1)
=
∑T

t=0 γ
i
t(yt − µ̂(p+1)

i)>(yt − µ̂(p+1)
i)

2
∑T

t=0 γ
i
t

.

4

The resulting log likelihoods are:

training test
HMM −3700.46 −3686.50
Gaussian mixture −4064.09 −4142.80

We see that the HMM yields higher log likelihood, which is to be
expected since Gaussian mixture model is a special case of the HMM
(when the transition probability p(xt+1 | xt) is independent of xt).
That is, HMM is a more expressive model, so it should be able to fit
the data better.

Problem 5.2
EM and missing values: Suppose you have a random sample of twins and
are interested in studying identical twins. However, you observe only:

• m ≡ the total number of male twins (both identical and fraternal)

• f ≡ the total number of female twins, and

• b ≡ the number of twins of opposite gender.

Let θ be the probability that a pair of twins are identical. Assume that,
given identical twins, the probability the twins are male is p. Given fraternal
twins, assume the number of males is Binomial(2, q).

Give an algorithm for calculating the MLEs for θ, p, and q. (Hint : If
you knew exactly how many identical male and female twins there are, then
the MLEs would be easy to calculate.)
Solution: We introduce the following latent variables:

mi = # identical male twins
fi = # identical female twins
mf = # fraternal male twins
ff = # fraternal female twins.

For convenience, we write

I = mi + fi = # identical twins
F = mf + ff = # fraternal twins
N = m+ f + b = # twins in total.

5

The generative process is described by the following diagram:

N

I F

mi fi mf ff b

θ 1− θ

(1− q)2
q2 2q(1− q)p 1− p

Note that this is not a graphical model describing the distribution. The
graphical model has “cliques” {N, I, F}, {I,mi, fi}, and {F,mf , ff , b}.

The complete data likelihood is

L(θ, p, q | D) = P(I, F | N) P(mi, fi | I,N) P(mf , ff , b | F,N)

=
{(

N

mi + fi

)
θmi+fi(1− θ)mf+ff+b

}{(
I

mi

)
pmi(1− p)fi

}
×
{(

F

mf , ff , b

)
q2mf (1− q)2ff (2q(1− q))b

}
= C θmi+fi (1− θ)mf+ff+b pmi (1− p)fi q2mf+b (1− q)2ff+b,

where C ≡ C(mi, fi,mf , ff , b) does not depend on the parameters θ, p, q.
Taking the log, we see that the log likelihood is linear in mi, fi,mf , ff , b, so
they are an appropriate set of sufficient statistics. Note that we have already
written the likelihood in a form where the parameters are “decoupled” to
make maximization easy.

E-step: For the E-step, we need to calculate the expected value of each
of these sufficient statistics. For notational convenience, assume all expec-
tations are taken with respect to the current estimate of the parameters.

6

Reading from the diagram or by algebraic manipulation, we see that

mi ∼ Multinomial(m+ f + b, θp)
fi ∼ Multinomial(m+ f + b, θ(1− p))
mf ∼ Multinomial(m+ f + b, (1− θ)q2)

ff ∼ Multinomial(m+ f + b, (1− θ)(1− q)2)
b ∼ Multinomial(m+ f + b, 2(1− θ)q(1− q)).

This implies for any particular set of twins,

P(identical | male) =
P(male AND identical)

P(male)
=

pθ

pθ + q2(1− θ) .

We can calculate similar results given the twins are female or mixed male/fe-
male, so we obtain

E[mi | m] =
mpθ

pθ + q2(1− θ)
E[fi | f] =

m(1− p)θ
(1− p)θ + (1− q)2(1− θ)

E[mf | m] = m− E[mi | m]
E[ff | f] = f − E[fi | f].

It is important to actually calculate these expectations and, in this case,
to give them in closed form. Some of the main reasons one uses EM are
that (1) it is often easy to implement, and (2) the iterations are fast so EM
runs in a reasonable amount of time. Leaving the E-step in terms of the
conditional probabilities (the maximizing auxiliary distribution) means one
has to sum over a set of values, which makes EM too slow.

Of those that calculated expectations, there were two common mistakes.
The first was saying E[mi | m, f, b] = (m+ f + b)pθ. This is incorrect since
it only uses information about the total number of twins and does not make
use of the additional information provided by the split into m, f, b. The
second mistake was saying E[mi | m, f, b] = mθ. There is some subtlety
in the generative process since fraternal male twins require two “coin flips”
versus one for the identical male twins, and the coin flips may have different
probabilities.

M-step: Returning to the complete data likelihood, we see that it has
the same form as the product of three binomials with parameters θ, p, q.

7

Therefore, maximizing the expected complete data (log-)likelihood is trivial:

θ ← E[mi | m] + E[fi | f]
m+ f + b

p← E[mi | m]
E[mi | m] + E[fi | f]

q ← 2E[mf | m] + b

2E[mf | m] + 2E[ff | f] + 2b
=

expected # fraternal males
expected # fraternal siblings

.

A common mistake was to forget about or incorrectly including b in the
update for q.

Problem 5.3
(Social network analysis and IPF:) Frank is studying dependencies in voting
patterns of a collection of d US senators. For any given bill, he collects a
vector x ∈ {0, 1}d, where xi = 1 means that senator i voted yes on that
bill. He models the random vector (X1, X2, . . . , Xd) as a pairwise Markov
random field

Pθ(x1, x2, . . . , xd) ∝
∏

(s,t)∈E

exp(θst(xs, xt)).

(a) For a set d = 4 senators, the data file Pairwise.dat contains a 4× 30
matrix, summarizing the data from n = 30 bills that were voted on
in the senate. Implement and apply the IPF updates to estimate the
model parameters for each of the following graphs: (i) the graph with
edge set E = {(12), (23), (34), (14)}; and (ii) the graph with edge set
E = {(12), (23), (13), (14)}; and (iii) the fully connected graph with
all
(
4
2

)
edges.

Solution: The code for the implementation of the IPF algorithm is
provided at the end of this document. We choose to initialize the
potential functions as θst(xs, xt) = 0 for all (s, t) ∈ E so that the nor-
malization constant can be computed explicitly, Z = 24 = 16. Note
that to compute the marginals p(t)(xs, xt) we probably should use algo-
rithms such as junction tree, but considering that we are only working
with graphs with 4 nodes, we can simply perform the marginalization
directly. We also note that the values of θst are unnormalized, i.e.
we can add any constant to any θst without changing the probability
distribution.

8

(i) E = {(12), (23), (34), (14)}.
Algorithm converges after 6 batch iterations.1 Log likelihood = −79.6370.
Estimated parameters:

(xs, xt)
(0,0) (0,1) (1,0) (1,1)

θst(xs, xt)

(12) 0.2880 −0.2237 −0.2237 0.0650
(23) 0.1180 −0.1338 −0.8478 0.4521
(34) −0.0114 0.0116 0.0077 −0.0076
(14) 0.1183 −0.1342 −0.1549 0.1341

(ii) E = {(12), (23), (13), (14)}.
Algorithm converges after 21 batch iterations. Log likelihood = −78.3564.
Estimated parameters:

(xs, xt)
(0,0) (0,1) (1,0) (1,1)

θst(xs, xt)

(12) 0.3923 −0.3874 −0.4051 0.2113
(23) 0.2049 −0.2405 −1.0487 0.5105
(13) −0.4326 0.2454 0.3998 −0.3247
(14) 0.1178 −0.1335 −0.1542 0.1335

(iii) E = {(12), (13), (14), (23), (24), (34)}.
Algorithm converges after 32 batch iterations. Log likelihood = −76.5029.
Estimated parameters:

(xs, xt)
(0,0) (0,1) (1,0) (1,1)

θst(xs, xt)

(12) 0.4706 −0.5140 −0.5232 0.3103
(13) −0.7243 0.4423 0.2229 −0.2071
(14) 0.2392 −0.2826 −0.3229 0.2668
(23) 0.4821 −0.4835 −0.9560 0.3961
(24) −0.4571 0.3348 0.3720 −0.5313
(34) 0.2654 −0.2393 −0.1632 0.1728

1One batch iteration is a cycle through all the edges and all the possible configurations
of the edges.

9

(b) Of models (i) and (ii), which model has a higher likelihood?

Solution: Model (ii) has a higher likelihood.

(c) Of all three models (i), (ii) and (iii), which has the highest likelihood?
Do you think that it is the “best” model?

Solution: Model (iii) has the highest likelihood. However, this is
somewhat vacuous; since it contains all of the edges in both mod-
els (i) and (ii), plus additional edges, it is a strictly more expressive
model than either of the other two and can capture more complex
relationships in the training data. This says nothing about how well
it generalizes, as we may have overfit by using such a powerful model
without any prior or form of regularization. In practice, we would
usually use criteria like the BIC or the AIC to balance the conflicting
considerations of maximizing the data likelihood and choosing a model
that will generalize well, or employ some expert information to start
with a graph that makes practical sense.

Problem 5.4
Model selection for trees: Recall that for a given tree T with edge set E(T),
the MLE for the exponential parameters takes the form

θ̂s(xs) = log µ̂s(xs) for all s ∈ V , and

θ̂st(xs, xt) = log
µ̂st(xs, xt)
µ̂s(xs)µ̂t(xt)

for all (s, t) ∈ E(T).

Here µ̂ are the empirical marginals computed from the data (e.g., µ̂st(j, k) =
1
n

∑n
i=1 Ist;jk(xis, xit)), and we assume that they take strictly positive values.

(a) Define the rescaled log likelihood `(θ) = 1
n

∑n
i=1 log Pθ(xi·). Letting

θ̂(T) denote the MLE for trees, show that `(θ̂(T)) depends on the
empirical marginals only via

Singleton entropy: H(µ̂s) = −
∑
xs

µ̂s(xs) log µ̂s(xs) ∀ s ∈ V , and

Joint edge entropy: H(µ̂st) = −
∑
xs,xt

µ̂st(xs, xt) log µ̂st(xs, xt) ∀ (s, t) ∈ E(T).

Solution: Suppose all the random variables Xs take values in a finite
set X . Note that for each 1 ≤ i ≤ n and s ∈ V , we can write

θ̂s(xis) = log µ̂s(xis) =
∑
j∈X

Is;j(xis) log µ̂s(j),

10

so

1
n

n∑
i=1

θ̂s(xis) =
1
n

∑
j∈X

n∑
i=1

Is;j(xis) log µ̂s(j) =
∑
j∈X

µ̂s(j) log µ̂s(j) = −H(µ̂s).

Similarly, since for 1 ≤ i ≤ n and (s, t) ∈ E we have

θ̂st(xis, xit) = log
µ̂st(xis, xit)
µ̂s(xis)µ̂t(xit)

=
∑
j,k∈X

Ist;jk(xis, xit) log µ̂st(j, k)−
∑
j∈X

Is;j(xis) log µ̂s(j)

−
∑
k∈X

It;k(xit) log µ̂t(k),

we can also write

1
n

n∑
i=1

θ̂st(xis, xit) =
1
n

∑
j,k∈X

n∑
i=1

Ist;jk(xis, xit) log µ̂st(j, k)

− 1
n

∑
j∈X

n∑
i=1

Is;j(xis) log µ̂s(j)− 1
n

∑
k∈X

n∑
i=1

It;k(xit) log µ̂t(k)

=
∑
j,k∈X

µ̂st(j, k) log µ̂st(j, k)−
∑
j∈X

µ̂s(j) log µ̂s(j)−
∑
k∈X

µ̂t(k) log µ̂t(k)

= −H(µ̂st) +H(µ̂s) +H(µ̂t).

Using the relations above, we can write down the rescaled log-likelihood
for the MLE as follows:

`(θ̂(T)) =
1
n

n∑
i=1

log

 1
Z

∏
s∈V

exp(θ̂s(xis))
∏

(s,t)∈E

exp(θ̂st(xis, xit)


= − logZ +

1
n

n∑
i=1

∑
s∈V

θ̂s(xis) +
∑

(s,t)∈E

θ̂st(xis, xit)


= − logZ −

∑
s∈V

H(µ̂s) +
∑

(s,t)∈E

(−H(µ̂st) +H(µ̂s) +H(µ̂t)
)

= − logZ +
∑
s∈V

(deg(s)− 1)H(µ̂s)−
∑

(s,t)∈E

H(µ̂st).

In the equations above, Z is a normalizing constant (which is actually
equal to 1 in this case) and deg(s) is the degree of vertex s in the tree.

11

This shows that `(θ̂(T)) only depends on the empirical marginals via
the singleton and joint edge entropy. Alternatively, we can also write
`(θ̂(T)) as

`(θ̂(T)) = − logZ −
∑
s∈V

H(µ̂s) +
∑

(s,t)∈E

I(µ̂st; µ̂s, µ̂t), (1)

where I(µ̂st; µ̂s, µ̂t) = H(µ̂s) +H(µ̂t)−H(µ̂st) is the mutual informa-
tion.

(b) In the model selection problem for trees, the goal is to choose, from all
trees on d nodes, the highest likelihood tree i.e., T̂ ∈ arg maxT `(θ̂(T)).
Show how this problem can be cast as a maximum weight spanning
tree calculation. This is important, because it allows us to select
the best tree by simple algorithms. (Hint: The mutual information
I(µ̂st; µ̂s, µ̂t) = H(µ̂s) + H(µ̂t) − H(µ̂st) should be relevant in your
calculations.)

Solution: Using the representation (1), we see that the term − logZ−∑
s∈V H(µ̂s) is independent of the choice of the tree, so

T̂ ∈ arg max
T

`(θ̂(T)) ⇐⇒ T̂ ∈ arg max
T

∑
(s,t)∈E

I(µ̂st; µ̂s, µ̂t).

Therefore, finding T̂ is equivalent to finding a maximum weight span-
ning tree in the complete graph with vertices V , in which each edge
(s, t) is assigned weight I(µ̂st; µ̂s, µ̂t).

(c) Use the technique from (b) to select the best fitting tree for the data
in Pairwise.dat.

Solution: The script for computing the mutual information I(µ̂st; µ̂s, µ̂t)
is attached at the end of this document. Figure 2 shows the weighted
complete graph with the mutual information as the edge weights. The
maximum weight spanning tree, which can be found by inspection (or
by running Kruskal’s algorithm), is shown with solid edges.

12

1 2

34

0.0194

0.0183
0.0090 0.0650

0.0
36

2

0

Figure 2: Weighted graph for Problem 5.4(c), with the mutual information
I(µ̂st; µ̂s, µ̂t) as the edge weights. The maximum weight spanning tree is
shown with solid edges.

Code for Problem 5.1

1 %% Script for running the computations for problem 5.1
2

3 load hmm-gauss.dat
4 load hmm-test.dat
5

6 numTrials = 5; % number of times to run EM
7

8

9 %% Fit a HMM with 4 states
10

11 % Initialize log likelihood to be a very small number
12 logLhoodHMM = -1e15;
13

14 % Run the EM algorithm numTrials times, choose the highest log likelihood
15 for i = 1:numTrials
16 [pi0 , A , mu , sigma2 , logLhood] = EM HMM(hmm gauss, 4);
17 if (logLhood > logLhoodHMM)
18 logLhoodHMM = logLhood ;
19 pi0HMM = pi0 ;
20 A = A ;
21 muHMM = mu ;
22 sigma2HMM = sigma2 ;
23 end
24 end
25

13

26 % Compute log likelihood of the test data
27 [¬, ¬, logLhoodHMM test] = FwBw(hmm test, pi0HMM, A, muHMM, sigma2HMM);
28

29

30 %% Fit a Gaussian mixture model with 4 states
31

32 % Initialize log likelihood to be a very small number
33 logLhoodMix = -1e15;
34

35 % Run the EM algorithm numTrials times, choose the highest log likelihood
36 for i = 1:numTrials
37 [pi0 , mu , sigma2 , logLhood] = EM GaussianMix(hmm gauss, 4);
38 if (logLhood > logLhoodMix)
39 logLhoodMix = logLhood ;
40 pi0Mix = pi0 ;
41 muMix = mu ;
42 sigma2Mix = sigma2 ;
43 end
44 end
45

46 % Compute log likelihood of the test data
47 logLhoodMix test = computeLogLhoodGaussianMix(hmm test, pi0Mix, muMix, sigma2Mix);
48

49

50 %% Plot training and test data
51

52 % Plot training data for HMM
53 figure;
54 scatter(hmm gauss(:,1), hmm gauss(:,2), 'xr');
55 title(sprintf('Training data, HMM\nLog likelihood = %.4f', ...
56 logLhoodHMM), 'FontSize', 13);
57 hold on; grid;
58 axis([-3.5 3.5 -3.5 3.5]); axis square;
59 scatter(muHMM(:,1), muHMM(:,2), 50, 'ok', 'filled');
60 for i = 1:4
61 z = (0:255)*2*pi/255;
62 x = sqrt(sigma2HMM(i))*cos(z) + muHMM(i,1);
63 y = sqrt(sigma2HMM(i))*sin(z) + muHMM(i,2);
64 plot(x, y, '--b', 'LineWidth', 2);
65 end
66

67

68 % Plot test data for HMM
69 figure;
70 scatter(hmm test(:,1), hmm test(:,2), 'xr');
71 title(sprintf('Test data, HMM\nLog likelihood = %.4f', ...
72 logLhoodHMM test), 'FontSize', 13);
73 hold on; grid;
74 axis([-3.5 3.5 -3.5 3.5]); axis square;

14

75 scatter(muHMM(:,1), muHMM(:,2), 50, 'ok', 'filled');
76 for i = 1:4
77 z = (0:255)*2*pi/255;
78 x = sqrt(sigma2HMM(i))*cos(z) + muHMM(i,1);
79 y = sqrt(sigma2HMM(i))*sin(z) + muHMM(i,2);
80 plot(x, y, '--b', 'LineWidth', 2);
81 end
82

83

84 % Plot training data for Gaussian mixture model
85 figure;
86 scatter(hmm gauss(:,1), hmm gauss(:,2), 'xr');
87 title(sprintf('Training data, Gaussian mixture\nLog likelihood = %.4f', ...
88 logLhoodMix), 'FontSize', 13);
89 hold on; grid;
90 axis([-3.5 3.5 -3.5 3.5]); axis square;
91 scatter(muMix(:,1), muMix(:,2), 50, 'ok', 'filled');
92 for i = 1:4
93 z = (0:255)*2*pi/255;
94 x = sqrt(sigma2Mix(i))*cos(z) + muMix(i,1);
95 y = sqrt(sigma2Mix(i))*sin(z) + muMix(i,2);
96 plot(x, y, '--b', 'LineWidth', 2);
97 end
98

99

100 % Plot test data for Gaussian mixture model
101 figure;
102 scatter(hmm test(:,1), hmm test(:,2), 'xr');
103 title(sprintf('Test data, Gaussian mixture\nLog likelihood = %.4f', ...
104 logLhoodMix test), 'FontSize', 13);
105 hold on; grid;
106 axis([-3.5 3.5 -3.5 3.5]); axis square;
107 scatter(muMix(:,1), muMix(:,2), 50, 'ok', 'filled');
108 for i = 1:4
109 z = (0:255)*2*pi/255;
110 x = sqrt(sigma2Mix(i))*cos(z) + muMix(i,1);
111 y = sqrt(sigma2Mix(i))*sin(z) + muMix(i,2);
112 plot(x, y, '--b', 'LineWidth', 2);
113 end

The code for implementing EM for HMM:

1 function [pi0, A, mu, sigma2, logLhood] = EM HMM(data, M)
2 % M is the number of states in the latent variable
3

4 % data is T-by-K
5 T = size(data,1); % number of iid observations
6 K = size(data,2); % dimensionality of the Gaussian

15

7

8 % Initialize cluster probabilities to be uniform 1/M
9 pi0 = ones(M,1)/M;

10

11 % Initialize transition probabilities to be uniform
12 A = ones(M,M)/M;
13

14 % Initialize mean values to be random data points -- mu is M-by-K
15 mu = data(randi(T,M,1), :);
16

17 % Initialize sigmaˆ2 to be the average distance between the data points and
18 % one random data point
19 centered = data - data(randi(T,1,1)*ones(T,1), :);
20 sigma2 init = (sum(sum(centered.ˆ2))/(2*T));
21 sigma2 = sigma2 init*ones(M,1);
22

23 % Compute gamma and xi via forward-backward
24 [gamma, xi, logLhood] = FwBw(data, pi0, A, mu, sigma2);
25

26 % Maximum number of iterations
27 maxIter = 1000;
28

29 % Iterate over the E and M steps
30 for iter = 1:maxIter
31 % Update parameters using gamma and xi
32 pi0 = gamma(:,1);
33

34 % Update transition probabilities matrix
35 for i = 1:M
36 for j = 1:M
37 A(i,j) = sum(xi(i,j,:))/sum(gamma(i,1:end-1));
38 end
39 end
40

41 % Update mean parameters
42 for i = 1:M
43 mu(i,:) = sum(data.*gamma(i*ones(1,K),:)')/sum(gamma(i,:));
44 end
45

46 % Update variance parameters - use the new mu values
47 for i = 1:M
48 centered = data - mu(i*ones(T,1), :); % centered data
49 sigma2(i) = sum(sum(centered.ˆ2,2).*gamma(i,:)')/(2*sum(gamma(i,:)));
50 end
51

52 % Then recompute gamma, xi, and log likelihood
53 logOld = logLhood;
54 [gamma, xi, logLhood] = FwBw(data, pi0, A, mu, sigma2);
55

16

56 % Check for convergence
57 if (logLhood - logOld < 1e-14)
58 fprintf('Converges after %d batch iterations!\n', iter);
59 break;
60 elseif (iter == maxIter)
61 fprintf('EM did not converge: final ∆ = %.8f\n', logLhood - logOld);
62 end
63 end

A helper function that computes the γt and ξt,t+1 variables, as well as the log likelihood of the
data, using the alpha-gamma recursion.

1 function [gamma, xi, logLhood] = FwBw(data, pi0, A, mu, sigma2)
2 % Computes posterior probabilities using alpha-gamma recursion
3

4 M = length(pi0); % number of states in the latent variables
5 T = size(data,1); % number of observations
6

7 % Compute the alpha variables
8 % Note: we always normalize so sum of alpha(q t) over q t is = 1
9 % But keep track of the normalizers to compute p(y)

10 alpha = zeros(M,T);
11 normalizer = zeros(T,1);
12

13 % First initialize alpha(q 0)
14 centered = data(ones(M,1),:) - mu;
15 alpha(:,1) = (pi0.*exp(-sum(centered.ˆ2,2)./(2*sigma2)))./(2*pi*sigma2);
16 normalizer(1) = sum(alpha(:,1));
17 alpha(:,1) = alpha(:,1)/normalizer(1);
18

19 % Then move forward in time
20 for t = 1:T-1
21 % Compute p(y {t+1}|q {t+1}=i) for i=1..M
22 centered = data((t+1)*ones(M,1),:) - mu;
23 post = exp(-sum(centered.ˆ2,2)./(2*sigma2))./(2*pi*sigma2);
24

25 % Compute \sum {q t} alpha(q t)*a {q t,q {t+1}=i) for i=1..M
26 c = sum(alpha(:,t*ones(1,M)).*A,1)';
27

28 % Store value of alpha
29 alpha(:,t+1) = post.*c;
30 normalizer(t+1) = sum(alpha(:,t+1));
31 alpha(:,t+1) = alpha(:,t+1)/normalizer(t+1);
32 end
33

34 % Compute the gamma variables
35 gamma = zeros(M,T);
36 gamma(:,T) = alpha(:,T);

17

37

38 % Then move backward in time
39 for t = (T-1):(-1):1
40 % Compute alpha(q t)*a {q t,q {t+1}} and normalize the sum
41 c = alpha(:,t*ones(1,M)).*A;
42 sum c = sum(c,1);
43 c = c./sum c(ones(M,1),:);
44

45 % Store value of gamma
46 gamma(:,t) = sum(c.*gamma(:,(t+1)*ones(1,M))',2);
47 end
48

49 % Compute the marginal log likelihood
50 logLhood = sum(log(normalizer));
51

52 % Compute the xi variables
53 xi = zeros(M,M,T-1);
54 for t = 1:T-1
55 % Compute p(y {t+1}|q {t+1}=j) for j=1..M
56 centered = data((t+1)*ones(M,1),:) - mu;
57 post = exp(-sum(centered.ˆ2,2)./(2*sigma2))./(2*pi*sigma2);
58

59 for i = 1:M
60 xi(i,:,t) = (alpha(i,t)*(post.*gamma(:,t+1).*A(i,:)')./alpha(:,t+1))';
61 end
62

63 % Need to normalize the xi since we rescaled alpha
64 xi(:,:,t) = xi(:,:,t)/sum(sum(xi(:,:,t)));
65 end

The code for implementing EM for Gaussian mixture model:

1 function [pi0, mu, sigma2, logLhood] = EM GaussianMix(data, M)
2 % M is the number of states in the latent variable
3

4 % data is T-by-K
5 T = size(data,1); % number of iid observations
6 K = size(data,2); % dimensionality of the Gaussian
7

8 % Initialize cluster probabilities to be uniform 1/M
9 pi0 = ones(M,1)/M;

10

11 % Initialize mean values to be random data points -- mu is M-by-K
12 mu = data(randi(T,M,1), :);
13

14 % Initialize sigmaˆ2 to be the average distance between the data points and
15 % one random data point
16 centered = data - data(randi(T,1,1)*ones(T,1), :);

18

17 sigma2 init = (sum(sum(centered.ˆ2))/(2*T));
18 sigma2 = sigma2 init*ones(M,1);
19

20 % Compute log likelihood of the data
21 logLhood = computeLogLhoodGaussianMix(data, pi0, mu, sigma2);
22

23 % Maximum number of iterations
24 maxIter = 1000;
25

26 % Iterate over the E and M steps
27 for iter = 1:maxIter
28 % Compute the posterior probabilities, each row for one q t
29 post = zeros(T,M);
30 for t = 1:T
31 % Compute y t-mu i for i = 1..M
32 centered = data(t*ones(M,1),:) - mu;
33

34 % Compute joint probability for y t:
35 % p(y t,q t=i) = p(q t=i)*p(y t | q t=1) for i=1..M
36 joint yt = (pi0.*exp(-sum(centered.ˆ2,2)./(2*sigma2)))./(2*pi*sigma2);
37

38 % Normalize and store to post
39 post(t,:) = joint yt'/sum(joint yt);
40 end
41

42 % Then update parameters
43 pi0 = sum(post,1)'/T;
44

45 % Update mean parameters
46 for i = 1:M
47 mu(i,:) = sum(data.*post(:,i*ones(1,K)))/sum(post(:,i));
48 end
49

50 % Update variance parameters - use the new mu values
51 for i = 1:M
52 centered = data - mu(i*ones(T,1), :); % centered data
53 sigma2(i) = sum(sum(centered.ˆ2,2).*post(:,i))/(2*sum(post(:,i)));
54 end
55

56 % Compute new log likelihood of the data
57 logOld = logLhood;
58 logLhood = computeLogLhoodGaussianMix(data, pi0, mu, sigma2);
59

60 % Check for convergence
61 if (logLhood - logOld < 1e-14)
62 fprintf('Converges after %d batch iterations!\n', iter);
63 break;
64 elseif (iter == maxIter)
65 fprintf('EM did not converge: final ∆ = %.8f\n', logLhood - logOld);

19

66 end
67 end

A helper function that computes the log likelihood of the data given the parameters. Note that
in this case the log likelihood is easy to compute since the observations are i.i.d., so

p(y) =
T∏
t=0

p(yt) =
T∏
t=0

M∑
i=1

p(yt, xt = i).

1 function logLhood = computeLogLhoodGaussianMix(data, pi0, mu, sigma2)
2

3 % Candidate for the log likelihood log(p(data))
4 logLhood = 0;
5

6 % Compute marginal p(y t) for each t separately
7 for t = 1:size(data,1)
8 % Compute y t - mu i for i = 1..M
9 centered = data(t*ones(size(mu,1),1),:) - mu;

10

11 % Compute joint probability for y t:
12 % p(y t,q t=i) = p(q t=i)*p(y t | q t=1) for i=1..M
13 joint yt = (pi0.*exp(-sum(centered.ˆ2,2)./(2*sigma2)))./(2*pi*sigma2);
14

15 % Then compute marginal probability p(y t) and add to total
16 logLhood = logLhood + log(sum(joint yt));
17 end

Code for Problem 5.3

1 function [logLhood Theta] = IPF(data, edges)
2 % Implement the IPF algorithm in the pairwise Markov random field model
3 % where the cliques are edges.
4

5 % data is M-by-N, assumed binary
6 % M is the number of nodes in the graph
7 % N is the number of iid observations
8 [M N] = size(data);
9

10 % edges is a cell, each entry is of the form (s,t) for some 1 ≤ s < t ≤ N
11 K = length(edges); % number of edges in the graph
12 for k = 1:K % make sure s < t
13 edges{k} = [min(edges{k}) max(edges{k})];
14 end
15

20

16 % Compute empirical distributions: Emp(i,j,k) is the fraction of the data
17 % that has (X s, X t) = (i-1, j-1), where (s,t) = edges{k}.
18 Emp = zeros(2,2,K);
19 for k = 1:K
20 % Find the nodes of the edge
21 s = edges{k}(1);
22 t = edges{k}(2);
23

24 % Iterate over the observations and update the appropriate entry of Emp
25 for n = 1:N
26 i = data(s,n) + 1;
27 j = data(t,n) + 1;
28 Emp(i,j,k) = Emp(i,j,k) + 1/N;
29 end
30 end
31

32 % Initialize the parameters: Theta(i,j,k) encodes theta st(X s=i-1,
33 % X t=j-1), where (s,t) = edges{k}.
34 Theta = zeros(2,2,K);
35

36 % In this case the normalizer Z can be computed explicitly
37 Z = 2ˆM;
38

39 % Compute initial log likelihood
40 logLhood = N*sum(sum(sum(Emp.*Theta))) - N*log(Z);
41

42 % Iterate over all edges and configurations
43 maxIter = 100; % maximum number of batch iterations
44 for iter = 1:maxIter
45 % Iterate over the edges
46 for k = 1:K
47 % Find the nodes of the edge
48 s = edges{k}(1);
49 t = edges{k}(2);
50

51 % Iterate over the configurations of (s,t)
52 for i = 1:2
53 for j = 1:2
54 % Generate possible configurations for the remaining M-2
55 % nodes.
56 % poss is 2ˆ(M-2)-by-(M-2)
57 poss = generatePoss(M-2);
58

59 % Interleave with the configuration of (s,t)
60 poss = [poss(:,1:s-1), ...
61 (i-1) * ones(2ˆ(M-2),1), ...
62 poss(:,s:t-2), ...
63 (j-1) * ones(2ˆ(M-2),1), ...
64 poss(:,t-1:end)];

21

65

66 % Compute marginal probability by summing over all possibilities
67 margPr = 0;
68 for w = 1:size(poss,1)
69 logPr = -log(Z);
70 for e = 1:length(edges)
71 logPr = logPr + ...
72 Theta(poss(w,edges{e}(1))+1, poss(w,edges{e}(2))+1, e);
73 end
74 margPr = margPr + exp(logPr);
75 end
76

77 % Update the corresponding entry of Theta
78 Theta(i,j,k) = Theta(i,j,k) + log(Emp(i,j,k)) - log(margPr);
79 end
80 end
81 end
82

83 % Compute log likelihood
84 logOld = logLhood;
85 logLhood = N*sum(sum(sum(Emp.*Theta))) - N*log(Z);
86

87 % Check for convergence
88 if (logLhood - logOld < 1e-14)
89 fprintf('Converges after %d batch iterations!\n', iter);
90 break;
91 elseif (iter == maxIter)
92 fprintf('IPF did not converge: final ∆ = %.8f\n', logLhood - logOld);
93 end
94 end
95

96

97 function poss = generatePoss(m)
98 % Generates a (2ˆm)-by-m array consisting of all possible binary
99 % configurations of m nodes.

100

101 if (m == 1)
102 poss = [0; 1];
103 else
104 possRec = generatePoss(m-1);
105 poss = [zeros(size(possRec,1),1), possRec; ...
106 ones(size(possRec,1),1), possRec];
107 end

Code for Problem 5.4

1 % This script finds a maximum weight spanning tree from the Pairwise.dat

22

2 % dataset with edge weights given by the mutual information I(\mu st;
3 % \mu s, \mu t).
4

5 load Pairwise.dat
6 d = size(Pairwise,1); % number of nodes in the graph
7 n = size(Pairwise,2); % number of observations
8

9 % Compute empirical vertex marginals \mu s
10 mu s = [(1/n) * sum(Pairwise==0, 2)' ; ... % X s = 0
11 (1/n) * sum(Pairwise==1, 2)']; % X s = 1
12

13 % Compute vertex entropy H(\mu s)
14 H s = -sum(mu s .* log(mu s))';
15

16 % Compute empirical edge marginals \mu st
17 mu st = zeros(2, 2, d*(d-1)/2);
18 count = 1; % for ordering the edges from 1 to d*(d-1)/2
19 for i = 1:d
20 for j = i+1:d
21 ones i = real(Pairwise(i,:) == 1); % when X i = 1
22 ones j = real(Pairwise(j,:) == 1); % when X j = 1
23 mu st(:,:,count) = (1/n) * ...
24 [(1-ones i)*(1-ones j)', (1-ones i)*ones j'; ...
25 ones i*(1-ones j)', ones i*ones j'];
26 count = count + 1;
27 end
28 end
29

30 % Compute edge entropy H(\mu st)
31 H st = zeros(d*(d-1)/2, 1);
32 for count = 1:d*(d-1)/2
33 mu edge = mu st(:,:,count);
34 H st(count) = -sum(sum(mu edge .* log(mu edge)));
35 end
36

37 % Compute mutual information I(\mu st; \mu s, \mu t)
38 I st = zeros(d*(d-1)/2, 1);
39 count = 1; % for ordering the edges from 1 to d*(d-1)/2
40 for i = 1:d
41 for j = i+1:d
42 I st(count) = H s(i) + H s(j) - H st(count);
43 fprintf('I(%d,%d) = %.4f\n', i, j, I st(count));
44 count = count + 1;
45 end
46 end

23

