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Problem 4.1

Sum-product algorithm: Consider the sum-product algorithm on an undi-
rected tree with compatibility functions ψs and ψst. For the tree in Fig-
ure 1(a), suppose that we have ternary random variables (i.e.,Xs ∈ {−1, 0, 1}),
where the compatibility functions are of the form:

ψst(xs, xt) =





a b b

b a b

b b a



 , ψs(xs) =





1
2
3



 for s odd and, ψs(xs) =





3
1
2



 for s even

(Here entry (i, j) in the 3×3 matrix notation for ψst gives the value ψst(i, j),
whereas entry i in the 3-vector ψs gives the number ψs(i)).

Throughout this problem, use the serial ordering of message-passing, in
which node s updates its message to t only when it has received all other
incoming messages.

(a) Implement the sum-product algorithm for a general tree. Please doc-
ument (meaning describe in comments within the code) what each
step is doing, and hand in your documented code. Use it to compute
marginal distributions for the tree in Figure 1(a), using the specified
compatibility functions with

(i) a = 1 and b = 0.5

(ii) a = 1 and b = 2.

(b) For any tree, prove that sum-product correctly computes the singleton
marginals in at most tree diameter iterations. (The tree diameter is
the length of the longest path between any two nodes.)
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(c) Show that for each edge (s, t) ∈ E, the message fixed point M∗ can be
used to compute the pairwise joint distribution over (xs, xt) as follows:

p(xs, xt) ∝ ψs(xs)ψt(xt)ψst(xs, xt)
∏

u∈N(s)\t

M∗
us(xs)

∏

u∈N(t)\s

M∗
ut(xt).
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Figure 1: (a) Undirected tree (for Problem 4.1(a)). (b), (c) Some undirected
graphs to triangulate (Problem 4.4).

Problem 4.2

Undirected trees and marginals: Let G = (V,E) be an undirected graph.
For each vertex i ∈ V , let µi be a strictly positive function such that
∑

xi
µi(xi) = 1. For each edge, let µij be a strictly positive function such

that
∑

xi
µij(xi, xj) = µj(xj) for all xj , and

∑

xj
µij(xi, xj) = µi(xi) for all

xi. Given integers k1, . . . , kd, consider the function

Q(x1, . . . , xd) =
d
∏

i=1

[

µi(xi)
]ki

∏

(i,j)∈E

µij(xi, xj).

Supposing that G is a tree, can you give choices of integers k1, . . . , kd for
which Q is a valid probability distribution? If so, prove the validity. (Hint:
It may be easiest to first think about a Markov chain.)
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Problem 4.3

Max-marginals: For each i ∈ {1, 2, . . . , d}, we define the max-marginal at
node i via

qi(xi) = max
xj ,j 6=i

P(x1, x2, . . . , xd).

When xi takes on m-states, then qi specifies a vector of m numbers. This
is the analog of an ordinary marginal distribution, with the summation
replaced by maximization.

Suppose that argmaxxi
qi(xi) = {x∗i } for each node (i.e., the maximum

is uniquely attained at x∗i ). Show that (x∗1, x
∗
2, . . . , x

∗
d) is the unique global

optimum, meaning that P(x∗1, . . . , x
∗
d) > P(x1, . . . , xd) for all x 6= x∗.

Problem 4.4

Triangulation/JT: Consider the two graphs shown in panels (b) and (c)
of Figure 1. For each graph, first form a triangulated version, and then
construct a junction tree using the greedy algorithm. (You can simply im-
plement each step of the greedy algorithm on paper to find a maximum
weight spanning tree.)
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