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Problem 4.1
Sum-product algorithm: Consider the sum-product algorithm on an undi-
rected tree with compatibility functions ψs and ψst. For the tree in Fig-
ure 1(a), suppose that we have ternary random variables (i.e., Xs ∈ {−1, 0, 1}),
where the compatibility functions are of the form:

ψst(xs, xt) =

a b b
b a b
b b a

 , ψs(xs) =

1
2
3

 for s odd and, ψs(xs) =

3
1
2

 for s even

(Here entry (i, j) in the 3×3 matrix notation for ψst gives the value ψst(i, j),
whereas entry i in the 3-vector ψs gives the number ψs(i)).

Throughout this problem, use the serial ordering of message-passing, in
which node s updates its message to t only when it has received all other
incoming messages.

(a) Implement the sum-product algorithm for a general tree. Please doc-
ument (meaning describe in comments within the code) what each
step is doing, and hand in your documented code. Use it to compute
marginal distributions for the tree in Figure 1(a), using the specified
compatibility functions with

(i) a = 1 and b = 0.5
(ii) a = 1 and b = 2.

Solution: The marginals for a = 1, b = 0.5 are:

P(Xs) = −1 P(Xs) = 0 P(Xs) = 1
X1 0.1617 0.2712 0.5671
X2 0.4220 0.1435 0.4345
X3 0.1639 0.2767 0.5594
X4 0.5058 0.1422 0.3520
X5 0.1868 0.2889 0.5243
X6 0.4376 0.1672 0.3952
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And the marginals for a = 1, b = 2 are:

P(Xs) = −1 P(Xs) = 0 P(Xs) = 1
X1 0.1690 0.3630 0.4680
X2 0.5395 0.1835 0.2769
X3 0.1704 0.3695 0.4601
X4 0.4461 0.1920 0.3619
X5 0.1473 0.3560 0.4967
X6 0.5344 0.1635 0.3021

The code implementing the sum product algorithm is attached below,
along with the script to run the algorithm on the tree given in this
problem.

1 function marginals = SumProduct(adj, psi s, psi st)
2 % This function implements the recursive SumProduct algorithm
3 % (without evidence) as outlined in the course reader,
4 % Figure 4.5.
5 %
6 % Input:
7 % * adj = n-by-n matrix with entries in {0, 1}, representing
8 % the adjacency matrix of the tree.
9 % * psi s = d-by-n matrix whose columns represent the vertex

10 % potentials. We assume each random variable X s can
11 % take d possible values.
12 % * psi st = n-by-n cell, whose (s,t)-entry is a d-by-d matrix
13 % representing the potential function for edge (s,t)
14 % in the tree. For pairs (s,t) that are not edges
15 % in the tree, psi st(s,t) is empty.
16 %
17 % Output:
18 % * marginals = d-by-n matrix whose columns are the marginals
19 % of the nodes in the tree.
20 %
21

22 n = size(adj,1); % number of nodes in the graph
23 d = size(psi s,1); % number of states in each variable
24

25 % Create a list of neighbors for each node
26 neighbors = cell(n,1);
27 for i = 1:n
28 neighbors{i} = find(adj(i,:) == 1);
29 end
30

31 % Initialize messages to be all 1.
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32 % For each edge (i,j), M{i,j} contains the message from node i
33 % to node j, and M{j,i} contains the message from node j to
34 % node i. If (i,j) is not an edge, M{i,j} is empty.
35 M = cell(n,n);
36 for i = 1:n
37 for j = i+1:n
38 if (adj(i,j) == 1)
39 M{i,j} = ones(d,1);
40 M{j,i} = ones(d,1);
41 end
42 end
43 end
44

45 % Arbitrarily choose root
46 root = 1;
47

48 % Collect messages from root's neighbors
49 for e = neighbors{root}
50 Collect(root, e);
51 end
52

53 % Distribute messages to root's neighbors
54 for e = neighbors{root}
55 Distribute(root, e);
56 end
57

58 % Compute marginals for each node
59 marginals = zeros(d,n);
60 for i = 1:n
61 % Multiply the potential of node i with the messages
62 % from its neighbors
63 psi i = psi s(:,i);
64 for j = neighbors{i}
65 psi i = psi i .* M{j,i};
66 end
67

68 % Then normalize to get the marginal
69 marginals(:,i) = psi i / sum(psi i);
70 end
71

72

73 % Helper function for collecting message from node j to
74 % node i. We first collect messages from node j's
75 % neighbors, excluding i, then send message from j to i.
76 function Collect(i,j)
77 for k = setdiff(neighbors{j}, i);
78 Collect(j,k);
79 end
80 SendMessage(j,i);
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81 end
82

83

84 % Helper function for distributing messages from node i
85 % to node j. We first send message from i to j, then
86 % forward the message to node j's neighbors, excluding i.
87 function Distribute(i,j)
88 SendMessage(i,j);
89 for k = setdiff(neighbors{j}, i);
90 Distribute(j,k);
91 end
92 end
93

94

95 % Helper function for sending message from node j to
96 % node i. We first compute the product of psi j(x j)
97 % and m kj(x j) over all neighbors k of j, excluding i,
98 % then multiply by \psi {ij}(x i,x j) and sum over x j.
99 function SendMessage(j,i)

100 psi j = psi s(:,j);
101 for k = setdiff(neighbors{j},i)
102 psi j = psi j .* M{k,j};
103 end
104 M{j,i} = sum(psi st{i,j} .* repmat(psi j', [d 1]), 2);
105 end
106

107 end

1 function marginals = RunSumProduct(a,b)
2 % Run the sum product algorithm for the tree given in Problem 4.1
3 % with the specified vertex and edge potentials.
4

5 % Adjacency matrix of the tree
6 adj = [0 1 1 0 0 0; ...
7 1 0 0 1 1 0; ...
8 1 0 0 0 0 1; ...
9 0 1 0 0 0 0; ...

10 0 1 0 0 0 0; ...
11 0 0 1 0 0 0];
12

13 % Vertex potentials
14 psi s = [1 3 1 3 1 3; ...
15 2 1 2 1 2 1; ...
16 3 2 3 2 3 2];
17

18 % Edge potentials
19 psi template = [a b b; b a b; b b a];
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20 psi st = cell(size(adj));
21 for i = 1:size(adj,1)
22 for j = i+1:size(adj,1)
23 psi st{i,j} = psi template;
24 psi st{j,i} = psi template;
25 end
26 end
27

28 % Run sum product
29 marginals = SumProduct(adj, psi s, psi st);
30

31 % Display results
32 fprintf('Marginals for a = %g, b = %g:\n', a, b);
33 for i = 1:size(marginals,2)
34 fprintf('X%d: %.4f %.4f %.4f\n', i, marginals(:,i)');
35 end

(b) For any tree, prove that sum-product correctly computes the singleton
marginals in at most tree diameter iterations. (The tree diameter is
the length of the longest path between any two nodes.)

Solution:

Convergence: We first prove that the messages stabilize after D
iterations, where D is the diameter of the tree. We use induction on
the tree diameter D. For D = 1, the result is immediate. Consider a
graph of diameter D. Let L be the set of all leaf nodes. For each v ∈ L,
let wv be the only element of Nv, which is a singleton set because v is
a leaf node. Thus, at the first time step t = 1, the (fixed) message v
sends to wv is

M∗v→wv
(xwv) =

∑
xv

ψv(xv)ψvwv(xv, xwv).

At each subsequent time step, the message each leaf sends to its neigh-
bor is constant, since it does not depend on messages from any other
nodes. We construct a new undirected graph G′ by stripping each of
the leaf nodes from the original graph and redefining the compatibility
function for each wv as

ψ′wv
(xwv) = ψwv(xwv)Mv→wv(xwv).

This new graphical model has diameter at most D − 2, which follows
because the longest path in a tree is between two leaf nodes. Therefore,
we can apply the inductive hypothesis to G′. Thus, after at most D−2
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time steps, the messages will all converge. Finally, note that replacing
the nodes v ∈ L in G′ will not affect any of the fixed-point messages,
since the nodes in L always send the same messages to their neighbors.
Adding on the first iteration where all leaf nodes send in messages and
the last iteration from nodes wv to the leaf nodes v, we conclude that
after D iterations, all messages will converge to a fixed point.

Correctness: We then prove that the fixed-point messages can be
used to compute the marginals via

p(xs) ∝ ψs(xs)
∏

t∈N(s)

M∗t→s(xs).

We use induction on the number of nodes in the tree. When the tree
has one node, the conclusion is trivial. Now let m ≥ 2, and suppose
the conclusion holds for any tree with m−1 nodes. We will show that
the result holds for a tree on m nodes, as well.

Renumber the nodes of the tree so that node m is a leaf, with node
1 as its neighbor. In the first iteration, node m sends the message
M∗m→1(x1) =

∑
xm
ψm(xm)ψ1m(x1, xm) to node 1. Note that by marginal-

izing out xm and using the factorization over potentials, we have

p(x1, . . . , xm−1) =
∑
xm

p(x1, . . . , xm)

∝ M∗m→1(x1)
m−1∏
i=1

ψi(xi)
∏

(j,k)∈E\{(1,m)}

ψjk(xj , xk).

In particular, all subsequent messages sent throughout the rest of the
graph behave as the sum-product algorithm on the nodes {1, . . . ,m− 1},
with the potential on node 1 replaced by ψ′1(x1) = M∗m→1(x1)ψ1(x1).
By the induction hypothesis, the messages on all edges between nodes
{1, . . . ,m − 1} converge to the proper messages M∗t→s(xs), such that
the marginal probability of each node is proportional to the product
of the node potential and all incoming messages.

It remains to show that the sum-product algorithm computes the cor-
rect marginal on node m; i.e., p(xm) ∝ ψm(xm)M∗1→m(xm). Since
p(x1) is proportional to the product of ψ1(x1) and all incoming mes-
sages, and M1→m(xm) is a sum of the product of ψ1(x1)ψ1m(x1, xm)
and the incoming messages from nodes in N(1)\{m}, we have

M∗1→m(xm) ∝
∑
x1

p(x1)
M∗m→1(x1)

ψ1m(x1, xm).
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Hence, we see that

ψm(xm)M∗1→m(xm) ∝ ψm(xm)
∑
x1

p(x1)∑
x′

m
ψm(x′m)ψ1m(x1, x′m)

ψ1m(x1, xm),

where we have substituted in the form of M∗m→1(x1). Finally, note that
marginalizing out the factorized form of p(x) with potentials (summing
over all variables except x1 and xm in the numerator, and all variables
except x1 in the denominator), we have

p(xm|x1) =
p(x1, xm)
p(x1)

=
ψm(xm)ψ1m(x1, xm)∑
x′

m
ψm(x′m)ψ1m(x1, x′m)

.

It follows that

ψm(xm)M∗1→m(xm) ∝
∑
x1

p(x1)p(xm|x1) = p(xm),

as wanted.

(c) Show that for each edge (s, t) ∈ E, the message fixed point M∗ can be
used to compute the pairwise joint distribution over (xs, xt) as follows:

p(xs, xt) ∝ ψs(xs)ψt(xt)ψst(xs, xt)
∏

u∈N(s)\t

M∗us(xs)
∏

u∈N(t)\s

M∗ut(xt).

Solution: Contract the edge (s, t) into a supernode st with vertex
potential ψ̃st(xs, xt) = ψs(xs)ψt(xt)ψst(xs, xt), and consider running
the sum product algorithm on this new tree. It is easy to see that the
fixed-point messages M̃∗uv(xv) in this new tree are exactly the same
as the old fixed-point messages M∗uv(xv) if v /∈ {s, t}. Furthermore, if
u is a neighbor of st in the new tree, then M̃∗u(st)(xs, xt) = M∗us(xs)

if (s, u) is an edge in the original tree, and M̃∗u(st)(xs, xt) = M∗ut(xt)
otherwise. Therefore, using the result of part (b) for the marginal of
the supernode st, we conclude that

p(xs, xt) ∝ ψ̃st(xs, xt)
∏

u∈N(st)

M̃u(st)(xs, xt)

= ψs(xs)ψt(xt)ψst(xs, xt)
∏

u∈N(s)\t

M∗us(xs)
∏

u∈N(t)\s

M∗ut(xt).
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Figure 1: (a) Undirected tree (for Problem 4.1(a)). (b), (c) Some undirected
graphs to triangulate (Problem 4.4).

Problem 4.2
Undirected trees and marginals: Let G = (V,E) be an undirected graph.
For each vertex i ∈ V , let µi be a strictly positive function such that∑

xi
µi(xi) = 1. For each edge, let µij be a strictly positive function such

that
∑

xi
µij(xi, xj) = µj(xj) for all xj , and

∑
xj
µij(xi, xj) = µi(xi) for all

xi. Given integers k1, . . . , kd, consider the function

Q(x1, . . . , xd) =
d∏

i=1

[
µi(xi)

]ki
∏

(i,j)∈E

µij(xi, xj).

Supposing that G is a tree, can you give choices of integers k1, . . . , kd for
which Q is a valid probability distribution? If so, prove the validity. (Hint:
It may be easiest to first think about a Markov chain.)
Solution: We claim that we can choose ki = 1 − degi to make Q ≡ QG a
probability distribution, where degi is the degree of node i in the tree G.
We prove this claim by induction on the number of vertices d in the graph.
When d = 1 the graph G only consists of a single node with degree 0, and
QG(x1) = µ1(x1) is a probability distribution because

∑
x1
µ1(x1) = 1. Now

assume the claim is true for all trees with d vertices, and let G = (V,E) be
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a tree with |V | = d+ 1 vertices. We want to prove that

QG(x1, . . . , xd, xd+1) =
d+1∏
i=1

µi(xi)1−degi

∏
(i,j)∈E

µij(xi, xj)

is a probability distribution. Without loss of generality assume node d + 1
is a leaf in G, and its only neighbor is node d. Since µd+1(xd+1) appears
with a power of 1 − degd+1 = 0, the only factor involving xd+1 in QG is
µd,d+1(xd, xd+1). Therefore, summing QG over xd+1 gives us

Q′G(x1, . . . , xd) =
∑
xd+1

QG(x1, . . . , xd, xd+1)

=

∑
xd+1

µd,d+1(xd, xd+1)

 d∏
i=1

µi(xi)1−degi

∏
(i,j)∈E

(i,j) 6=(d,d+1)

µij(xi, xj)

=

(
d−1∏
i=1

µi(xi)1−degi

)
µd(xd)2−degd

∏
(i,j)∈E\{(d,d+1)}

µij(xi, xj).

Let G′ = (V ′, E′) be the tree that we get after removing vertex d + 1 from
G, where V ′ = V \ {d + 1} and E′ = E \ {(d, d + 1)}, and note that the
degrees of the nodes in G′ now satisfy deg′i = degi for 1 ≤ i ≤ d − 1, and
deg′d = degd−1, since node d lost the edge (d, d+ 1). Now observe that we
can write

Q′G(x1, . . . , xd) =
d∏

i=1

µi(xi)1−deg′
i

∏
(i,j)∈E′

µij(xi, xj) = QG′(x1, . . . , xd).

Therefore, using the inductive hypothesis that QG′ is a probability distribu-
tion, we conclude that∑

x1,...,xd+1

QG(x1, . . . , xd+1) =
∑

x1,...,xd

QG′(x1, . . . , xd) = 1,

as desired.

Problem 4.3
Max-marginals: For each i ∈ {1, 2, . . . , d}, we define the max-marginal at
node i via

qi(xi) = max
xj ,j 6=i

P(x1, x2, . . . , xd).
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When xi takes on m-states, then qi specifies a vector of m numbers. This
is the analog of an ordinary marginal distribution, with the summation
replaced by maximization.

Suppose that arg maxxi qi(xi) = {x∗i } for each node (i.e., the maximum
is uniquely attained at x∗i ). Show that (x∗1, x

∗
2, . . . , x

∗
d) is the unique global

optimum, meaning that P(x∗1, . . . , x
∗
d) > P(x1, . . . , xd) for all x 6= x∗.

Solution: Let x = (x1, . . . , xd) ∈ arg maxy P(y). Then for each 1 ≤ i ≤ d,
on the one hand we have

P(x) ≤ max
yj ,j 6=i

P(y1, . . . , yi−1, xi, yi+1, . . . , yd) = q(xi),

and on the other hand, because P(x) = maxy P(y), we also have

P(x) ≥ max
yj ,j 6=i

P(y1, . . . , yi−1, x
∗
i , yi+1, . . . , yd) = q(x∗i ) = max

yi

q(yi).

This means xi ∈ arg maxyi q(yi), which implies xi = x∗i . Since this holds for
all 1 ≤ i ≤ d, we conclude that x = x∗.

Problem 4.4
Triangulation/JT: Consider the two graphs shown in panels (b) and (c)
of Figure 1. For each graph, first form a triangulated version, and then
construct a junction tree using the greedy algorithm. (You can simply im-
plement each step of the greedy algorithm on paper to find a maximum
weight spanning tree.)
Solution:

(a) We triangulate the graph by running elimination algorithm on it with
ordering 1, 2, 3, 4, 5, 8, 10, 6, 7, 9 and using the reconstituted graph as
the triangulated version of the initial graph (in general, we want to
use elimination ordering that results in introducing as few new edges
as possible). We then identify the maximum cliques and build a clique
graph where the nodes are the maximum cliques and the edge weights
are the cardinality of the intersection of the cliques. Finally, we con-
struct the junction tree by finding a maximum weight spanning tree
in this clique graph. See Figure 2 for a sample junction tree. (Note:
this is just one of many possible solutions).

(b) The tree-building pipeline is the same as in previous part. We use
elimination ordering 4, 5, 1, 2, 3, 6, 7, 8, which only introduces 1 new
edge.
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Figure 2: (a), (b) Some undirected graphs to triangulate. (c) Tree for sum-
product.
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Figure 3: Problem 3a: Initial graph, triangulated graph, and junction tree
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Figure 2: Problem 4.4(a): Initial graph, triangulated graph, and junction
tree.
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