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Problem 3.1
Suppose that three discrete random variables (X,Y, Z) have a joint PMF
such that p(x, y, z) > 0 for all (x, y, z). Show that if X ⊥ Y | Z and
X ⊥ Z | Y , then we haveX ⊥ (Y, Z). Is this still true if we allow p(x, y, z) = 0
for some (x, y, z)?
Solution: For any x, y, z, note that from X ⊥ Y | Z we have p(x | y, z) =
p(x | z), and from X ⊥ Z | Y we have p(x | y, z) = p(x | y). Thus
p(x | z) = p(x | y), and therefore,

p(y) p(x, z) = p(y) p(z) p(x | z) = p(y) p(z) p(x | y) = p(z) p(x, y).

Summing over y gives us p(x, z) = p(x) p(z), so X ⊥ Z, and summing over
z gives us p(x, y) = p(x) p(y), so X ⊥ Y . Therefore, using the relation
p(y | x) = p(y) (from X ⊥ Y ) and p(z | x, y) = p(z | y) (from X ⊥ Z | Y ),
we obtain

p(x, y, z) = p(x) p(y | x) p(z | x, y) = p(x) p(y) p(z | y) = p(x) p(y, z).

Hence we conclude that X ⊥ (Y,Z).

Counterexample for when p(x, y, z) = 0 for some x, y, z (courtesy of Ka Kit
Lam): Let θ ∼ Bernoulli(1

2). On the event θ = 0, let X,Y, Z be i.i.d. uniform
random variables taking values in {0, 1}, and on the event θ = 1, let X,Y, Z
be i.i.d. uniform random variables taking values in {2, 3}. Then X ⊥ Y | Z
because conditioning on Z tells us the value of θ, which makes X and Y
independent. Similarly, we also have X ⊥ Z | Y . However, note that

p(X = 0, Y = 2, Z = 2) = 0 6= 1
4
· 1

8
= p(X = 0) p(Y = 2, Z = 2),

which shows that X is not independent to (Y, Z).

Problem 3.2
For each of the following statements, either give a proof of its correctness,
or a counterexample to show incorrectness.
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(a) If X1 ⊥ X2, then X1 ⊥ X2 | X3.

Solution: False. Let X1, X2 ∼ Bernoulli(1
2) i.i.d. and X3 = X1 +X2

(mod 2). Then p(X1 = x1 | X3 = x3) = p(X2 = x2 | X3 = x3) = 1/2
for all x1, x2, x3 ∈ {0, 1}, but p(X1 = x1, X2 = x2 | X3 = 0) = 0 if
x1 6= x2. This shows that X1 is not independent of X2 given X3.

(b) If X1 ⊥ X2 | X4 and X1 ⊥ X3 | X4, then X1 ⊥ (X2, X3) | X4.

Solution: False. Let X2, X3 ∼ Bernoulli(1
2) i.i.d., let X1 = X2 + X3

(mod 2), and let X4 be independent of X1, X2, X3. Then X1 ⊥ X2

and X1 ⊥ X3, but X1 is completely determined by observing the pair
(X2, X3).

(c) If X1 ⊥ (X2, X3) | X4, then X1 ⊥ X2 | X4.

Solution: True. We have

p(x2 | x1, x4) =
∑
x3

p(x2, x3 | x1, x4) =
∑
x3

p(x2, x3 | x4) = p(x2 | x4),

where the second equality uses the assumption X1 ⊥ (X2, X3) | X4.

Problem 3.3
Graphs and independence relations: For i = 1, 2, 3, let Xi be an indicator
variable for the event that a coin toss comes up heads (which occurs with
probability q). Supposing that that the Xi are independent, define Z4 =
X1 ⊕ X2 and Z5 = X2 ⊕ X3 where ⊕ denotes addition in modulo two
arithmetic.

(a) Compute the conditional distributions of (X2, X3) given Z5 = 0 and
Z5 = 1 respectively.

Solution: Note that if z5 = x2 ⊕ x3, then

P(X2 = x2, X3 = x3 | Z5 = z5) =
P(X2 = x2, X3 = x3, Z5 = z5)

P(Z5 = z5)

=
P(X2 = x2, X3 = x3)

P(z5)
,

and P(X2 = x2, X3 = x3 | Z5 = z5) = 0 otherwise. Furthermore, we
also have

P(Z5 = 0) = P(X2 = 0, X3 = 0) + P(X2 = 1, X3 = 1) = (1− q)2 + q2
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and

P(Z5 = 1) = P(X2 = 0, X3 = 1) + P(X2 = 1, X3 = 0) = 2q(1− q).

Therefore,

P(X2 = 0, X3 = 0 | Z5 = 0) =
(1− q)2

(1− q)2 + q2

P(X2 = 1, X3 = 1 | Z5 = 0) =
q2

(1− q)2 + q2

P(X2 = 1, X3 = 0 | Z5 = 0) = 0
P(X2 = 0, X3 = 1 | Z5 = 0) = 0,

and similarly,

P(X2 = 0, X3 = 0 | Z5 = 1) = 0
P(X2 = 1, X3 = 1 | Z5 = 1) = 0

P(X2 = 1, X3 = 0 | Z5 = 1) =
1
2

P(X2 = 0, X3 = 1 | Z5 = 1) =
1
2
.

(b) Draw a directed graphical model (the graph and conditional prob-
ability tables) for these five random variables. What independence
relations does the graph imply?

Solution:

(a) (b)

Figure 1: (a) Directed graphical model for Problem 3.3(b). (b) Undirected
graphical model for Problem 3.3(c).
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The directed graphical model is given in Figure 1(a). The conditional
probability tables display the conditional probability distributions for
each node given its parents. The tables for this problem are listed
below. Note that the tables for the Xi’s are simply the marginal
distributions, and that given their parents, the nodes Zj are specified
exactly.

• For X1, X2, and X3:

Xi = 0 Xi = 1
1− q q

• For Z4:

Z4 = 0 Z4 = 1
X1 = 0, X2 = 0 1 0
X1 = 0, X2 = 1 0 1
X1 = 1, X2 = 0 0 1
X1 = 1, X2 = 1 1 0

• For Z5:

Z5 = 0 Z5 = 1
X2 = 0, X3 = 0 1 0
X2 = 0, X3 = 1 0 1
X2 = 1, X3 = 0 0 1
X2 = 1, X3 = 1 1 0

We list the conditional independence assertions implied by the graph
below. Note that if XA ⊥ XB | XC , then certainly XA′ ⊥ XB′ | XC

for any A′ ⊆ A,B′ ⊆ B (cf. Problem 3.2(c)). Hence, we will only list
the largest sets XA and XB which are conditionally independent given
XC ; all other conditional independence assertions follow trivially from
this fact.

• X1 ⊥ (X2, X3, Z5)

• X1 ⊥ X2 | (X3, Z5)

• X1 ⊥ Z5 | (X2, X3, Z4)

• X1 ⊥ (X2, X3) | Z5

• X1 ⊥ (X2, Z5) | X3
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• X1 ⊥ (X3, Z5) | (X2, Z4)

• X2 ⊥ (X1, X3)

• X2 ⊥ X3 | (X1, Z4)

• X3 ⊥ (X1, X2, Z4)

• X3 ⊥ (X1, X2) | Z4

• X3 ⊥ (X2, Z4) | X1

• X3 ⊥ (X1, Z4) | (X2, Z5)

• X3 ⊥ Z4 | (X1, X2, Z5)

• Z4 ⊥ (X3, Z5) | (X1, X2)

• Z4 ⊥ Z5 | (X1, X2, X3)

• Z5 ⊥ (X1, Z4) | (X2, X3)

• (X1, Z4) ⊥ (X3, Z5) | X2

(c) Draw an undirected graphical model (the graph and compatibility
functions) for these five variables. What independence relations does
it imply?

Solution: The graphical model is the moralized form of the graph in
part (b), given in Figure 1(b).

The maximal cliques in this graphical model can be parametrized in
two ways, either as

Ψ{X1,Z4,X2}(x1, z4, x2) = p(x1)p(x2)p(z4|x1, x2)

Ψ{X2,Z5,X3}(x2, z5, x3) = p(x3)p(z5|x2, x3),

or

Ψ{X1,Z4,X2}(x1, z4, x2) = p(x1)p(z4|x1, x2)

Ψ{X2,Z5,X3}(x2, z5, x3) = p(x3)p(x2)p(z5|x2, x3).

Th conditional independence assertions implied by the graph are

• (X1, Z4) ⊥ (X3, Z5) | X2

• Z4 ⊥ (X3, Z5) | (X1, X2)

• (X1, Z4) ⊥ Z5 | (X2, X3)

• X1 ⊥ (X3, Z5) | (Z4, X2)

• (X1, Z4) ⊥ X3 | (X2, Z5)

5



• Z4 ⊥ Z5 | (X1, X2, X3)

• Z4 ⊥ X3 | (X1, X2, Z5)

• X1 ⊥ Z5 | (Z4, X2, X3)

• X1 ⊥ X3 | (Z4, X2, Z5).

As before, we have omitted the independencies that may be derived
directly from the decomposition rule of Problem 3.2(c).

(d) Under what conditions on q do we have Z5 ⊥ X3 and Z4 ⊥ X1? Are
either of these marginal independence assertions implied by the graphs
in (b) or (c)?

Solution: First note that when q ∈ {0, 1}, X1, X2, and X3 are all
constant random variables, which implies that Z4 and Z5 are also
constant, so Z5 ⊥ X3 and Z4 ⊥ X1.

Next, consider 0 < q < 1. For independence to hold, we need

P(Z5 = 1) = P(Z5 = 1 | X3 = 0) = P(Z5 = 1 | X3 = 1).

Note that

P(Z5 = 1 | X3 = 0) = P(X2 = 1) = q,

P(Z5 = 1 | X3 = 1) = P(X2 = 0) = 1− q,

and as before,
P(Z5 = 1) = 2q(1− q).

Thus, we have independence for 0 < q < 1 if and only if q = 1
2 . These

marginal independence assertions are not implied by the graphs.

Problem 3.4
Consider a sequence of random variables (X1, . . . , Xd) generated according
to the following procedure:

(i) Sample X1 ∼ N(0, 1).

(ii) Given some a ∈ (−1, 1), for t = 1, . . . , d − 1, set Xt+1 = aXt +√
1− a2 Wt, where the {Wt}d−1

t=1 are independent N(0, 1) variables,
with Wt chosen independently of Xt.
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(a) Compute the covariance matrix Σ ∈ Rd×d of the random vectorX ∈ Rd.

Solution: Let W =
(
W0 W1 · · · Wd−1

)>, where W0 := X1, and

X =
(
X1 X2 · · · Xd

)>. By construction, we can write X = AW ,
where A is the d× d lower triangular matrix given by

A =


1 0 0 0 · · ·
a
√

1− a2 0 0 · · ·
a2 a

√
1− a2

√
1− a2 0 · · ·

...
...

...
. . .

 .

Clearly W ∼ N(0, I). Therefore, X is also normally distributed, being
a linear combination of jointly Gaussian random variables, with mean
E[X] = AE[W ] = 0 and covariance

Σ = Cov(X) = E[XX>] = A E[WW>]A> = AA>.

Given the lower triangular matrix A above, the covariance matrix Σ =
AA> has a nice structure:

Σ =



1 a a2 a3 · · · ad−1

a 1 a a2 · · · ad−2

a2 a 1 a · · · ad−3

a3 a2 a 1 · · · ad−3

...
...

...
...

. . .
...

ad−1 ad−2 ad−3 ad−4 · · · 1


.

(b) Show that the inverse covariance matrix Σ−1 is always tridiagonal,
meaning that it is non-zero only on its diagonal and on the two di-
agonals above and below the main diagonal. (I.e., (Σ−1)ij = 0 for all
|i− j| > 1.)

Solution:

We prove a more general statement about Gaussian graphical model:
in an undirected graphical model G = (V,E) where the node variables
(X1, . . . , Xd) are jointly Gaussian with zero mean and covariance ma-
trix Σ, we have (i, j) /∈ E if and only if (Σ−1)ij = 0. In our particular
problem, observe that the sequence (X1, . . . , Xd) is a Markov chain,
so if |i − j| > 1, then (i, j) /∈ E in the graph. Since we already know
that (X1, . . . , Xd) is jointly Gaussian, the claim above tells us that if
|i− j| > 1 then (Σ−1)ij = 0, i.e. Σ−1 is tridiagonal.
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Now to prove the claim, fix any pair of indices (i, j) /∈ E, and let
x\{i,j} be the subvector of x = (x1, . . . , xd) with components i and j

removed. We write Θ = Σ−1 for simplicity. Then for each x ∈ Rd, we
can write the multivariate Gaussian density as

p(x) =
1
Z

exp
(
− 1

2
x>Θx

)
=

1
Z

exp(−xixjΘij) exp
(
− 1

2

∑
k 6=i

xkxjΘkj

)
exp

(
− 1

2

∑
l 6=j

xixlΘil

)
exp

(
− 1

2

∑
k,l 6=i,j

xkxlΘkl

)
= exp(−xixjΘij) gi(xi, x\{i,j}) gj(xj , x\{i,j}) (1)

where Z is the normalization constant and gi, gj are positive functions
that we constructed to make the above equation true.

Since p is positive and obeys the graph G, the Hammersley-Clifford
Theorem tells us that there exist positive potential functions Ψc de-
fined on the maximal cliques, C, of G such that p(x) =

∏
c∈C Ψc(xc).

Since (i, j) /∈ E, i and j do not appear together in any clique, so, by
collecting those potential terms that depend on xj and those that do
not, we can write

p(x) = fi(xi, x\{i,j})fj(xj , x\{i,j}) (2)

for some positive functions fi, fj .

Combining equations 1 and 2, we have

exp(−xixjΘij) =
fi(xi, x\{i,j})
gi(xi, x\{i,j})

fj(xj , x\{i,j})
gj(xj , x\{i,j})

= hi(xi) hj(xj),

for positive functions hi, hj (the second equality follows as the left-hand
side does not depend on x\{i,j}). When xi = 0, we see hj(xj) = 1/hi(0)
for all xj , implying that hj(xj) is a constant function of xj . Similarly,
hi(xi) is constant, and so exp(−xixjΘij) is a constant function of
xi, xj . Hence we have exp(−xixjΘij) = exp(−0 · 0 ·Θij) = 1 and thus
we conclude that Θij = 0.

(Hint: You may want to simulate this numerically just to confirm the in-
tuition. In proving the result, the Hammersley-Clifford theorem could be
helpful.)
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Problem 3.5
Consider the directed graph shown in Figure 2(a). For each of the following
conditional independence statements, verify whether or not they hold. In
each case, be explicit using the Bayes ball algorithm, indicating how the ball
gets through, or how it is blocked for each possible path.

(a) X2 ⊥ X8 | {X3, X4, X5}.
Solution: False. The ball can go directly from 2 to 8.

(b) X8 ⊥ X9 | {X3, X4, X5}.
Solution: False. The ball can go from 8 to 9 following the path
8− 2− 6− 4− 7− 9.

(c) X7 ⊥ X10 | {X3, X4, X5}.
Solution: False. The ball can go from 7 to 10 following the path
7− 9− 5− 9− 10.

2
9

1 7

3

5

6

4

8

10 2

8 97

31

54 6

(a) (b)

Figure 2: (a) A directed graph. (b) An undirected graphical model: a 3× 3
grid, frequently used in spatial statistics and image processing.

Problem 3.6
Undirected graphs and elimination: Consider the undirected graph in Fig-
ure 2(b): it is a 3× 3 grid or lattice graph.

(a) Sketch the sequence of graphs obtained by running the algorithm
Graph-eliminate:
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(i) Following the ordering {5, 4, 8, 6, 2, 9, 3, 7, 1}?
(ii) Following the ordering {1, 7, 3, 9, 2, 4, 6, 8, 5}?

What is the largest clique formed by each graph sequence? Which
ordering is preferable?

Solution:

(i) The sequence of graph elimination is given in Figure 3. The
largest elimination cliques, as defined in Section 3.2.1 of the
reader, are T4 = {1, 2, 4, 6, 7, 8}, T8 = {1, 2, 6, 7, 8, 9}, and T6 =
{1, 2, 3, 6, 7, 9}, so the largest intermediate clique is of size 6.

1 2 3

4 5 6

7 8 9

1 2 3

4 6

7 8 9

1 2 3

6

7 8 9

1 2 3

6

7 9

1 2 3

7 9

1 3

7 9

1 3

7

1

7

1

Figure 3: Sequence of graph elimination following the ordering
{5, 4, 8, 6, 2, 9, 3, 7, 1}.
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(ii) The sequence of graph elimination is given in Figure 4. The
largest elimination cliques are T2 = {2, 4, 5, 6} and T4 = {4, 5, 6, 8},
so in this case the largest intermediate clique is of size 4. Thus
this ordering is more preferable.

1 2 3

4 5 6

7 8 9

2 3

4 5 6

7 8 9

2 3

4 5 6

8 9

2

4 5 6

8 9

2

4 5 6

8

4 5 6

8

5 6

8

5

8

5

Figure 4: Sequence of graph elimination following the ordering
{5, 4, 8, 6, 2, 9, 3, 7, 1}.

(b) Using intuition from the previous example (n = 3), give a reasonable
(� n2) upper bound on the treewidth of the n× n grid.

Solution: If we eliminate the nodes one row at a time, from left to
right, then it is easy to see that at each step the largest elimination
clique is of size at most n+ 1. Thus the treewidth of the n× n grid is
at most n.
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