
UC Berkeley
Department of Electrical Engineering and Computer Science

Department of Statistics

EECS 281A / STAT 241A Statistical Learning Theory

Problem Set 2
Fall 2012

Issued: Tues. Sep. 4, 2012 Due: Thurs. Sep. 13, 2012

Reading: Chapters 6 and 8

Problem 2.1
The course homepage has a data set named lms.dat that contains twenty

rows of three columns of numbers. The first two columns are the components
of an input vector x and the last column is an output y value. (We will
not use a constant term for this problem; thus the input vector and the
parameter vector are both two dimensional.)

(a) Solve the normal equations for these data to find the optimal value of
the parameter vector. (I recommend using MATLAB or R.)

Solution: By solving the normal equations, we have:

θ∗ = (X>X)−1X>y =
(

1.0395
−0.9764

)
.

(b) Find the eigenvectors and eigenvalues of the covariance matrix of the
input vectors and plot contours of the cost function L(θ) = ‖y−Xθ‖22
in the parameter space. These contours should of course be centered
around the optimal value from part (a).

Solution: The covariance matrix of the data is C = 1
nX
>X, where

n = 20 is the number of data points. Note that the covariance matrix
of a random vector x is defined as E[xx>]. To make the link, let the
distribution of x be uniform over the rows of X.

The eigenvalues of C are λ1 = 2.8671 and λ2 = 1.0466, with the
corresponding eigenvectors

v1 =
(
−0.9001
0.4356

)
and v2 =

(
−0.4356
−0.9001

)
.

Note that you can also define the covariance matrix as C = 1
n−1X

>X

or C = X>X. The contours of L should be ellipses centered around

1

θ∗ with axes corresponding to the eigenvectors. The larger eigenvector
λ1 should correspond to the minor axis and the smaller eigenvector λ2

to the major axis.

The contour plot of L(θ) is given in Figure 1, along with the trajectory
of the LMS algorithm from part (c).

θ

0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5
ρ = 0.5 / maxEig
ρ = 0.1 / maxEig
ρ = 0.01 / maxEig

Figure 1: The LMS trajectory with learning rates ρ that depend on the
maximum eigenvalue of the covariance matrix.

(c) Initializing the LMS algorithm at θ = 0 plot the path taken in the
parameter space by the algorithm for three different values of the step
size ρ. In particular let ρ equal the inverse of the maximum eigenvalue
of the covariance matrix, one-half of that value, and one-quarter of
that value.

Solution: LMS is an online algorithm: at each iteration we pick a
point (xi, yi) and make the update

θ ← θ + ρ(yi − θ>xi)xi.

To improve performance, it is generally advisable to choose a random
ordering rather than go through the points in order.

2

Note that it may take many iterations for θ to approach θ∗. Even
then, LMS is not guaranteed to converge at all, and in general, will not
converge. The following batch update (which corresponds to gradient
descent on L):

θ ← θ + ρ
n∑
i=1

(yi − θ>xi)xi

does converge given an appropriate step size ρ.

For larger ρ, the algorithm takes bigger steps in the parameter space
but tends to overshoot and is quite noisy. For smaller ρ, the algorithm
takes smaller steps but is more stable. In practice, decreasing the step
size ρ over time and monitoring the progress on the objective L is a
good strategy.

Figure 1 shows the trajectory of the LMS algorithm for several dif-
ferent values of ρ. Note that the maximum eigenvalue in this case
is small since we use the normalized covariance matrix, so we choose
smaller values of ρ than what is asked in the problem in order to better
illustrate the behavior of the algorithm.

The code that implements this problem is as follows.

1 %% CS 281A/Stat241A Homework 2.1 demo code
2

3 %% Part (a)
4

5 % Load dataset
6 load lms.dat
7 X = lms(:,1:2);
8 y = lms(:,3);
9 n = length(y);

10

11 % Solve normal equation
12 theta = (X'*X)\(X'*y);
13

14 %% Part (b)
15

16 % Find eigenvalues and eigenvectors of the covariance matrix
17 [V,D] = eig(X'*X/n);
18

19 % Create mesh grid centered at theta
20 [A,B] = meshgrid((theta(1)-1.5):.1:(theta(1)+1.5), ...
21 (theta(2)-1.5):.1:(theta(2)+1.5));
22

23 % Compute the objective function at each grid point

3

24 J = zeros(size(A));
25 for p = 1:size(A,1)
26 for q = 1:size(A,2)
27 aux = y-X*[A(p,q); B(p,q)];
28 J(p,q) = 0.5*(aux'*aux);
29 end
30 end
31

32 % Plot contour map
33 figure; contour(A,B,J,15); hold on;
34

35 % Also show the optimal theta from part (a)
36 plot(theta(1), theta(2), 'kx', 'LineWidth', 3);
37 text(theta(1)+0.2, theta(2)+0.2, '\theta', 'FontSize', 16);
38

39 %% Part (c)
40

41 % Find the maximum eigenvalue
42 maxEig = max(diag(D));
43

44 % Run the LMS algorithm with various parameters
45 path1 = LMS(X, y, [0;0], 0.5/maxEig);
46 path2 = LMS(X, y, [0;0], 0.1/maxEig);
47 path3 = LMS(X, y, [0;0], 0.01/maxEig);
48

49 % Plot of the trajectory paths
50 h1 = line(path1(1,:), path1(2,:), 'Color', 'r');
51 h2 = line(path2(1,:), path2(2,:), 'Color', 'g');
52 h3 = line(path3(1,:), path3(2,:), 'Color', 'b');
53 legend([h1 h2 h3], '\rho = 0.5 / maxEig', ...
54 '\rho = 0.1 / maxEig', '\rho = 0.01 / maxEig');

1 function path = LMS(X, y, init, rho)
2

3 % Maximum number of iterations
4 maxIter = 1000;
5

6 % Place to store the updated parameters
7 path = zeros(size(X,2), maxIter+1);
8 path(:,1) = init;
9

10 % Initialize seed for random number generator
11 RandStream.setDefaultStream(RandStream(...
12 'mt19937ar','seed',sum(100*clock)));
13

14 % Random indices for the data point to use at each iteration
15 ind = randi(size(X,1), maxIter, 1);

4

16

17 % Iterate through the random indices
18 for i = 1:maxIter
19 path(:,i+1) = path(:,i) + ...
20 rho*(y(ind(i))-path(:,i)'*X(ind(i),:)')*X(ind(i),:)';
21

22 % Check for convergence
23 if norm(path(:,i+1)-path(:,i)) < 1e-14
24 path = path(:,1:i+1);
25 fprintf('Converges after %d iterations!\n', i);
26 break;
27 end
28 end

Problem 2.2
The course website contains a data set classification2d.dat of (xi, yi)

pairs, where the xi are 2-dimensional vectors and yi is a binary label.

(a) Plot the data, using 0’s and X’s for the two classes. The plots in the
following parts should be plotted on top of this plot.

Solution: All the plots for this problem are given in Figure 2, includ-
ing the classification boundaries from parts (b) and (c), for both the
train and test datasets.

(b) Write a program to fit a logistic regression model using stochastic
gradient ascent (or IRLS if you prefer). Plot the line where the logistic
function is equal to 0.5.

Solution: The logistic regression model is

p(y = 1 | x) =
1

1 + exp(−θ>x− b)
,

where θ is a parameter and b is a bias. To account for this bias term,
we consider the modified matrix X̃ consisting of the appended data
points x̃i = (xi, 1), and the modified parameter θ̃ = (θ, b). We estimate
θ̃ using the stochastic gradient update algorithm given in Eq. (7.65)
in Chapter 7, with initial value θ̃(0) = (0, 0, 0) and step size ρ(t) = 1/t
(following the Robbins-Monro algorithm). We let the algorithm run
for 50,000 iterations, where at each iteration we select a data point at
random and update θ̃ using that data point, and in the end, we find
the estimate for θ̃:

θ̃ =

−0.8123
1.6836
0.1398

 .

5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Train dataset

(b) Logistic regression
(c) Linear regression

(a) Train dataset

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Test dataset

(b) Logistic regression
(c) Linear regression

(b) Test dataset

Figure 2: Plot of the train and test datasets, along with the classification
boundaries.

6

The contour p(y = 1 | x) = 1/2 is given by the line θ>x + b = 0, or
equivalently,

−0.8123 x1 + 1.6836 x2 + 0.1398 = 0.

(c) Fit a linear regression to the problem, treating the class labels as real
values 0 and 1. (You can solve the linear regression in any way you’d
like, including solving the normal equations, using the LMS algorithm,
or calling the built-in routines in Matlab or R). Plot the line where
the linear regression function is equal to 0.5.

Solution: The linear regression model is

y = θ>LRx+ b,

where b is a bias term. As in part (c), we consider the modified
matrix X̃ consisting of the appended data points x̃i = (xi, 1), and the
modified parameter θ̃LR = (θLR, b). Then θ̃LR still satisfies the normal
equation

X̃>X̃θ̃LR = X̃>y ⇒ θ̃LR = (X̃>X̃)−1X̃>y =

−0.1534
0.3736
0.5527

 .

So the linear regression model is

y = −0.1534 x1 + 0.3736 x2 + 0.5527,

and the contour y = 1/2 is given by the line

−0.1534 x1 + 0.3736 x2 + 0.0527 = 0.

(d) The data set testing.dat is a separate data set generated from the
same source. Test your fits from the previous parts on these data and
compare the results.

Solution: For each of the classifiers from part (b) and (c), we compute
the classification function f(x) on the test dataset, and predict the
label y = 1 if f(x) ≥ 0.5, and y = 0 otherwise. We then compute the
error of each classifier (i.e. the fraction of misclassified points). We find
that logistic regression gives a 0.075 error rate, and linear regression
gives a 0.050 error rate. Thus, linear regression yields a slightly better
performance. Figure 2(b) shows the plot of the test dataset and the
contour lines when the classification functions are equal to 1/2.

7

The code that implements this problem is as follows.

1 %% CS 281A/Stat241A Homework 2.2 demo code
2

3 %% Part (a)
4

5 % Load data
6 load classification2d.dat;
7 X = classification2d(:, 1:2);
8 y = classification2d(:, 3);
9

10 % Plot data
11 figure;
12 scatter(X(y==0,1), X(y==0,2), 'bo');
13 hold on;
14 scatter(X(y==1,1), X(y==1,2), 'kx');
15 axis square; grid;
16 title('Train dataset ');
17

18 %% Part (b)
19

20 % Append a constant term in the data to account for bias term
21 X app = [X ones(size(X,1),1)];
22

23 % Compute theta using stochastic gradient algorithm
24 theta log = SGA(X app, y, [0;0;0]);
25

26 % Plot the line where logistic function is equal to 0.5
27 xplot = [-3 3];
28 hb = line(xplot, ...
29 -theta log(3)/theta log(2)-(theta log(1)/theta log(2))*xplot, ...
30 'Color', 'g');
31

32 %% Part (c)
33

34 % Solve normal equation for linear regression
35 theta LR = (X app'*X app)\(X app'*y);
36

37 % Plot the line where linear regression is equal to 0.5
38 hc = line(xplot, ...
39 (0.5-theta LR(3))/theta LR(2)-(theta LR(1)/theta LR(2))*xplot, ...
40 'Color', 'r');
41 axis([-3 3 -3 3]);
42 legend([hb hc], ...
43 '(b) Logistic regression', '(c) Linear regression');
44

45 %% Part (d)
46

8

47 % Load test data
48 load testing.dat;
49 X test = testing(:, 1:2);
50 y test = testing(:, 3);
51 X test app = [X test ones(size(X test,1),1)];
52

53 % Plot test data
54 figure;
55 scatter(X test(y test==0,1), X test(y test==0,2), 'bo');
56 hold on;
57 scatter(X test(y test==1,1), X test(y test==1,2), 'kx');
58 axis square; grid;
59 title('Test dataset ');
60

61 % Plot contour lines for each classifier on the test dataset
62 hb = line(xplot, ...
63 -theta log(3)/theta log(2)-(theta log(1)/theta log(2))*xplot, ...
64 'Color', 'g');
65 hc = line(xplot, ...
66 (0.5-theta LR(3))/theta LR(2)-(theta LR(1)/theta LR(2))*xplot, ...
67 'Color', 'r');
68 axis([-3 3 -3 3]);
69 legend([hb hc], ...
70 '(b) Logistic regression', '(c) Linear regression');
71

72 % Compute classification function for each classifier
73 aux b = 1./(1+exp(-X test app*theta log));
74 aux c = X test app*theta LR;
75

76 % Then compute classification prediction for each classifier
77 pred b = (aux b ≥ 0.5);
78 pred c = (aux c ≥ 0.5);
79

80 % Finally, compute the misclassification error
81 err b = sum(pred b 6= y test)/length(y test);
82 err c = sum(pred c 6= y test)/length(y test);

1 function theta = SGA(X, y, init)
2

3 % Maximum number of iterations
4 maxIter = 50000;
5

6 % Current theta parameter
7 theta = init;
8

9 % Initialize seed for random number generator
10 RandStream.setDefaultStream(...

9

11 RandStream('mt19937ar','seed',sum(100*clock)));
12

13 % Random indices for the data point to use at each iteration
14 ind = randi(size(X,1), maxIter, 1);
15

16 % Iterate through the random indices
17 for i = 1:maxIter
18 Ui = 1/(1+exp(-theta'*X(ind(i),:)'));
19 theta = theta + (1/i) * (y(ind(i))-Ui) * X(ind(i),:)';
20 end

Problem 2.3
The ridge regression estimate is defined as

θ̂ ∈ arg min
θ∈Rd

{
‖y −Xθ‖22 + λn‖θ‖22

}
where λn > 0 is a positive regularization weight.

(a) Can the ridge regression problem have multiple optimal solutions?
Why or why not? Justify your answer.

Solution: No, ridge regression has a unique optimal solution because
the objective function is strictly convex due to the presence of the term
λn‖θ‖22. Note that merely stating that the objective function is convex
is not enough, as a convex function can have multiple minimizers (e.g.
a constant function).

(b) In a Bayesian model, the parameter θ is viewed as random, and equipped
with a prior distribution π. The maximum a posteriori (MAP) esti-
mate is obtained by maximizing the function f(θ) : = P(y | X, θ) π(θ).
Explain how the ridge regression estimate can be recovered as a MAP
estimate.

Solution: Let θ ∼ N (0, (1/λn)I), and conditioned on X and θ, let
y1, . . . , yn be independent with yi | Xi, θ ∼ N (X>i θ, 1). Then the

10

MAP estimate of θ given X and y is

θMAP = arg max
θ∈Rd

p(θ | X, y)

= arg max
θ∈Rd

p(y | X, θ) π(θ)

= arg max
θ∈Rd

[
n∏
i=1

1√
2π

exp
(
− 1

2
(
yi −X>i θ

)2)] 1
(2π)d/2

exp
(
−λn

2
‖θ‖22

)
= arg max

θ∈Rd

1

(2π)
n+d

2

exp
(
−1

2
‖y −Xθ‖22 −

λn
2
‖θ‖22

)
= arg min

θ∈Rd
‖y −Xθ‖22 + λn‖θ‖22

= θ̂.

(c) Suppose that the matrix X is orthonormal. Give an explicit and easily
computed expression for the ridge regression solution as a function
(y,X, λn).

Solution: Taking derivative of the ridge regression objective function
and setting is to zero gives us

(X>X + λnI)θ̂ = X>y,

so θ̂ = (X>X + λnI)−1X>y. When X is orthonormal, i.e. X>X = I,
this reduces to

θ̂ =
1

1 + λn
X>y.

As an aside, note that the matrix X>X + λnI is strictly positive def-
inite, so it is invertible. This is because X>X is positive semidefinite,
so it has all nonnegative eigenvalues, and adding λnI simply shifts all
the eigenvalues up by λn.

(d) If we replace the quantity ‖θ‖22 with the `1-norm ‖θ‖1 =
∑d

j=1 |θj |,
the resulting estimator is known as the Lasso. Assuming that X is
orthonormal, give an explicit and easily computed expression for the
Lasso solution as a function of (y,X, λn).

Solution: When X is orthonormal, we can write the Lasso objective

11

function as

L(θ) = ‖y −Xθ‖22 + λn‖θ‖1
= ‖y‖22 − 2(X>y)>θ + ‖θ‖22 + λn‖θ‖1

=
n∑
i=1

(
y2
i − 2(X>y)iθi + θ2

i + λn|θi|
)
.

Thus, minimizing L(θ) is equivalent to minimizing each function

Li(θi) = y2
i − 2(X>y)iθi + θ2

i + λn|θi|.

Note that we can also write

Li(θi) = max{L+
i (θi),L−i (θi)} = L+

i (θi) 1{θi≥0} + L−i (θi) 1{θi<0},

where
L+
i (θi) = y2

i − 2(X>y)iθi + θ2
i + λnθi

and
L−i (θi) = y2

i − 2(X>y)iθi + θ2
i − λnθi.

The function L+
i is minimized by θ+

i = (X>y)i − λn/2, which is non-
negative when (X>y)i ≥ λn/2, in which case θ+

i also minimizes Li(θi).
Similarly, L−i is minimized by θ−i = (X>y)i + λn/2, which is nonpos-
itive when (X>y)i ≤ −λn/2, in which case θ−i also minimizes Li(θi).
When |(X>y)i| < λn/2, the function Li is increasing for θ ≥ 0 and
decreasing for θ ≤ 0, so the minimum is achieved at θi = 0. Combining
all the cases above, we can write the optimal θi as

θLasso
i = sign((X>y)i)

(∣∣(X>y)i
∣∣− λn

2

)
+
.

(e) Based on parts (c) and (d), which estimator (ridge or Lasso) is likely
to lead to a sparser solution? Explain. (Note: A vector is sparse if it
has a relatively small number s� d of non-zero components.)

Solution: From part (c) we see that for the ridge regression estimator,
θ̂i = 0 if and only if (X>y)i = 0. From part (d) we see that for the
Lasso estimator, θLasso

i = 0 if and only if |(X>y)i| ≤ λn/2. Thus the
Lasso estimator is sparser.

12

Problem 2.4
Recall that a probability distribution in the exponential family takes the
form

p(x; η) = h(x) exp{ηTT (x)−A(η)}

for a parameter vector η, often referred to as the natural parameter, and for
given functions T , A, and h.

(a) Determine which of the following distributions are in the exponential
family, exhibiting the T , A, and h functions for those that are.

(i) N(µ, I)—multivariate Gaussian with mean vector µ and identity
covariance matrix.
Solution: The density for a d-dimensional Gaussian with mean
µ and covariance matrix I is

p(x) =
1

(2π)d/2
exp

(
− 1

2
‖x− µ‖22

)
=

1
(2π)d/2

exp
(
− 1

2
x>x+ µ>x− 1

2
µ>µ

)
,

so we have an exponential family with parameters

h(x) =
1

(2π)d/2
exp

(
− 1

2
x>x

)
,

T (x) = x,

η = µ,

A(η) =
1
2
ηT η.

(ii) Dir(α)—Dirichlet with parameter vector α = (α1, α2, . . . , αK).
Solution: The Dirichlet density for θ ∈ RK is

p(θ) =
1

B(α)

K∏
i=1

θαi−1
i =

K∏
i=1

1
θi

exp

(
K∑
i=1

αi log θi − logB(α)

)
,

where B(α) =
QK

i=1 Γ(αi)

Γ(
PK

i=1 αi)
. Hence, we have an exponential family

13

distribution with parameters

h(θ) =
K∏
i=1

1
θi
,

T (θ) =
(
log(θ1) · · · log(θK)

)>
,

η = α,

A(η) = logB(η).

(iii) Mult(θ)—multinomial with parameter vector θ = (θ1, θ2, . . . , θK).
Use the fact that θK = 1−

∑K−1
k=1 θk and express the distribution

using a (K − 1)-dimensional parameter η.
Solution: We assume the number of trials is fixed at n. When∑K

i=1 xi = n, the density is

p(x) =
(

n

x1, x2, . . . , xK

) K∏
i=1

θxi
i

=
(

n

x1, x2, . . . , xK

)
exp

(
K∑
i=1

xi log θi

)

=
(

n

x1, x2, . . . , xK

)
exp

(
K−1∑
i=1

xi log θi +
(
n−

K−1∑
i=1

xi

)
log θK

)

=
(

n

x1, x2, . . . , xK

)
exp

(
K−1∑
i=1

xi(log θi − log θK) + n log θK

)
.

For i = 1, . . . ,K, take

ηi = log θi − log θK = log
θi
θK

.

Note that

1 =
K∑
i=1

θi = θK

K∑
i=1

eηi ,

so

θK =

(
K∑
i=1

eηi

)−1

=

(
1 +

K−1∑
i=1

eηi

)−1

.

14

Hence, we have an exponential family with parameters

h(x) = 1{PK
i=1 xi=n}

(
n

x1, x2, . . . , xK

)
,

T (x) =
(
x1 · · · xK−1

)>
,

η =
(
η1 · · · ηK−1

)>
,

A(η) = −n log θK = n log

(
1 +

K−1∑
i=1

eηi

)
.

(iv) the uniform distribution over the interval [0, η].
Solution: This is not in the exponential family, since the support
of this distribution depends on the parameter η.

(v) the log normal distribution: the distribution of Y = exp(X),
where X ∼ N(0, σ2).
Solution: The log normal density has the form

p(y) =
1

yσ
√

2π
exp

(
−(log y)2

2σ2

)
=

1
y
√

2π
exp

(
−1
2σ2

(log y)2 − 1
2

log
(
σ2
))

.

Hence, the log normal distribution is in the exponential family
with

h(y) =
1

y
√

2π
,

T (y) = (log y)2,

η = − 1
2σ2

,

A(η) = −1
2

log(−2η).

(b) Recall that the function A(η) has moment-generating properties—
in particular, ∇ηA(η) = E[T (X)]. Demonstrate that this relationship
holds for those examples that are in the exponential family in part (a).

(i) Normal:

∇ηA(η) = ∇η
(

1
2
η>η

)
= η = µ = E[X] = E[T (X)].

15

(ii) Dirichlet:
For this distribution, we employ a general exponential family ar-
gument to derive the desired result:

1 =
∫
h(x) exp

(
η>T (x)−A(η)

)
,

so

0 = ∇η
∫
h(x) exp

(
η>T (x)−A(η)

)
dx

=
∫
∇η
{
h(x) exp

(
η>T (x)−A(η)

)}
dx

=
∫ (

T (x)−∇ηA(η)
)
h(x) exp

(
η>T (x)−A(η)

)
dx

= E[T (X)]−∇ηA(η),

implying that
E[T (X)] = ∇ηA(η).

Note that we exchange the order of integration and differenti-
ation. There are cases in which this exchange is not valid. See
Appendix A.9 in “Probability: Theory and Examples” by Durrett
for sufficient conditions under which differentiation and integra-
tion can be exchanged.
One may also solve this by using the definition that A(η) is the
function which makes the density integrate to 1, that is,

A(η) = log
∫
h(x) exp(ηTT (x)).

(iii) Multinomial:
For each 1 ≤ i ≤ K − 1,

∂

∂ηi

{
n log

(
1 +

K−1∑
i=1

eηi

)}
= n

eηi

1 +
∑K−1

i=1 eηi
= nθi = E[Xi].

(v) Log normal:
Note that E[(log Y)2] = E[X2] = σ2, since Y = exp(X) for X ∼
N(0, σ2). Furthermore,

d

dη
A(η) =

d

dη

{
− 1

2
log(−2η)

}
=
−1
2η

= σ2.

16

Problem 2.5
(ML/entropy, conjugacy and duality): Given a function f : Rn → R ∪
{+∞}, the dual function is a new function f∗ : Rn → R∪{+∞}, defined as
follows:

f∗(v) = sup
u∈Rn

{
vTu− f(u)

}
. (1)

(Note that the supremum can be +∞ for some v ∈ Rn.)

(a) Given the cumulant generating function A(θ) = log[1 + exp(θ)], for a
Bernoulli variable, compute the dual function A∗. What is the link
between this computation and maximum likelihood estimation? How
is A∗ related to Bernoulli entropy? Compute the double dual A∗∗,
and verify that A∗∗ = A. How is computing A∗∗ related to maximum
entropy?

Solution: The dual function is A∗(v) = supu∈R{uv− log(1 + exp(u)}.
The inner expression is a concave function of u, so we can maximize
it by setting its derivative to zero:

v − exp(u∗)
1 + exp(u∗)

= 0,

from which we get u∗ = log(v
1−v). Note that this is valid only for

0 < v < 1. Plugging this value back to the definition, we obtain

A∗(v) = u∗v − log(1 + exp(u∗)) = v log v + (1− v) log(1− v)

for 0 < v < 1. It is easy to see that A∗(v) =∞ when v < 0 (by taking
u → −∞) or v > 1 (by taking u → ∞). Moreover, we can also show
that A∗(v) = 0 for v ∈ {0, 1}.
The computation of A∗(v) is precisely the process of computing the
MLE of u when v is a sample drawn from the Bernoulli(u) distribution.
Moreover, for 0 < v < 1, A∗(v) is equal to (−1) times the entropy of
the Bernoulli(v) distribution.

To compute the double dual A∗∗(u) = supv∈R{vu−A∗(v)}, it suffices to
restrict the domain of v to [0, 1], for otherwise we have −A∗(v) = −∞.
By taking derivative of the inner expression and setting it to zero, we
obtain

u = log v∗ − log(1− v∗),

17

which gives us

v∗ =
exp(u)

1 + exp(u)
.

Plugging this value back to the definition of A∗∗, we get

A∗∗(u) = v∗u−A∗(v∗) = log(1 + exp(u)) = A(u).

In particular, A∗∗(0) is computing the maximum entropy of the Bernoulli
distribution.

(b) Using the definition (1), prove that the dual function f∗ is always
convex: i.e., for all λ ∈ [0, 1], v, v′ ∈ Rn, f∗

(
λv+(1−λ)v′

)
≤ λf∗(v)+

(1− λ)f∗(v′).

Solution: We have

f∗(λv + (1− λ)v′) = sup
u∈Rn

{(
λv + (1− λ)v′

)>
u− f(u)

}
= sup

u∈Rn

{
λ(v>u− f(u)) + (1− λ)(v′>u− f(u))

}
≤ λ sup

u∈Rn
{v>u− f(u)}+ (1− λ) sup

u∈Rn
{v′>u− f(u)}

= λf∗(v) + (1− λ)f∗(v′).

(c) Given a function f , assume that it is differentiable on Rn, and that
it satisfies the duality relation f∗∗ = f . Use definition (1) for f∗ and
f∗∗ = f to prove that f(u) ≥ f(w)+∇f(w)T (u−w) for all u,w ∈ Rn.

Solution: Since f is differentiable, we can take gradient and set it to
zero in computing f∗(v), giving us the first-order optimality condition
v = ∇f(u∗). Thus, for each u ∈ Rn we have

f∗(∇f(u)) = u>∇f(u)− f(u).

Now for any u,w ∈ Rn, since f∗∗ = f ,

f(u) = f∗∗(u) = sup
v∈Rn
{u>v − f∗(v)}

≥ u>∇f(w)− f∗(∇f(w))

= u>∇f(w)− w>∇f(w) + f(w)

= f(w) +∇f(w)>(u− w).

Note: Some students wrote that the desired inequality is equivalent
to the convexity of f , which follows from part (b) and the assumption

18

that f∗∗ = f . While this is true, we want you to prove the inequality
from first principles.

Hint: Each of parts (b) and (c) require proofs, but the arguments need not
be very long.

Problem 2.6
Maximum entropy and exponential families For a discrete random variable
X ∈ X with distribution p(·), the (Boltzmann-Shannon) entropy is given
by H(p) : = −

∑
x∈X p(x) log p(x). (We assume that 0 log 0 = 0 in this

expression). The entropy is a measure of the uncertainty associated with X.
Although entropy can be defined more generally, for this problem assume
that |X | is finite.

(a) Suppose that we are given a set of expectation constraints on p(·),
say of the form

∑
x∈X p(x)Tα(x) = µα for a collection of functions

{T1, T2, . . . , TD}. (In practice, these constraints would be imposed
by making observations.) Consider the maximum entropy problem of
maximizing H(p) subject to these expectation constraints, the non-
negativity condition p(x) ≥ 0 for all x ∈ X , and the normalization
constraint

∑
x∈X p(x) = 1. Write out the Lagrangian associated with

this constrained optimization problem.

Solution: The optimization variables are p = {p(x) : x ∈ X}. Let
λ0 denote the Lagrange multiplier for the normalization constraint,
and for 1 ≤ α ≤ D, let λα denote the Lagrange multiplier for the
expectation constraint for Tα. Then the Lagrangian associated with
this optimization problem is

Λ(p, λ) = −
∑
x∈X

p(x) log p(x) + λ0

(∑
x∈X

p(x)− 1
)

+
D∑
α=1

λα

(∑
x∈X

p(x)Tα(x)− µα
)
,

where p ∈ R|X |≥0 and λ = (λ0, λ1, . . . , λD) ∈ RD+1.

(b) By computing stationary points of the Lagrangian, show that the op-
timal solution p̂ takes the form of an exponential family.

Solution: The stationary points of the Lagrangian satisfy ∇p,λΛ = 0.
The partial derivative of Λ with respect to each p(x) is

∂Λ
∂p(x)

= − log p(x)− 1 + λ0 +
D∑
α=1

λαTα(x),

19

and upon setting this equal to zero, we obtain

p̂(x) = exp

(
−1 + λ0 +

D∑
α=1

λαTα(x)

)
.

Hence we see that the optimal solution p̂ must be in the exponential
family, where the parameters λ are chosen to satisfy the expectation
constraints.

20

