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Reading: This homework is purely undergraduate review on probability
and linear algebra; relevant material is covered in recitation on Wednes-
day, August 29th. If you are not familiar with the concepts here, then you
do not have the appropriate background for this course, and will
find the course too demanding. In this case, it would be best to drop the
class, which would allow someone on the wait list with the appropriate back-
ground to enroll. This homework must be done alone, without consulting
any classmates or friends.

Problem 1.1
Consider the collection of vectors:[

1 1 1 x
]
,
[
1 1 x 1

]
,
[
1 x 1 1

]
,
[
x 1 1 1

]
.

(a) For which real numbers x do these vectors not form a basis of R4?

Solution: These vectors form a basis of R4 if and only if the basis
matrix

B(x) =


x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x


is nonsingular. Using expansion by minors, we can compute

detB(x) = x4 − 6x2 + 8x− 3 = (x− 1)3(x+ 3).

Therefore, the four vectors above do not form a basis of R4 if x = 1
or x = −3.

(b) For each value of x from (a), what is the dimension of the subspace of
R4 that they span?

Solution: If x = 1 then the four vectors above are the same, so they
span a one-dimensional subspace. If x = 3, then the first three vectors
are linearly independent and their sum is equal to the fourth one, so
the four vectors above span a three-dimensional subspace.
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Problem 1.2
For square matrices, prove the following properties of the matrix trace and
determinant:

(a) trace(A+B) = trace(A) + trace(B).

Solution:

trace(A+B) =
N∑
i=1

(A+B)ii =
N∑
i=1

Aii+
N∑
i=1

Bii = trace(A)+trace(B).

(b) trace(AB) = trace(BA).

Solution:

trace(AB) =
N∑
i=1

(AB)ii =
N∑
i=1

N∑
j=1

AijBji =
N∑
j=1

N∑
i=1

BjiAij

=
N∑
j=1

(BA)jj = trace(BA).

(c) det(AB) = det(A) det(B).

Solution:

We solve this problem by considering two cases:

(a) det(A) = 0

(b) det(B) 6= 0.

Case 1: det(A) = 0
It suffices to show that det(AB) = 0. Since det(A) = 0, A does not
have full-rank (n). Thus,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(A) < n.

In other words, (AB) does not have full-rank and so det(AB) = 0.

Case 2: det(A) 6= 0
The assumption that det(A) 6= 0 is equivalent to the assumption that
A is the finite product of elementary matrices:

A = E1 · · ·Ef .
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Thus, if we can show that the results hold elementary matrices Ei:

det(EiB) = det(Ei)det(B),

we will have

det(AB) = det(E1E2 · · ·EfB) = det(E1)det(E2 · · ·EfB) = · · ·
= det(E1) · · · det(Ef )det(B)
= det(E1E2)det(E3) · · · det(B)
= det(A)det(B)

I will now show that the result holds for elementary matrices E.

Recall the possible choices for the single row operation one performs
on an identity matrix in order to obtain an elementary matrix:

1. Switching the position of two rows: This operation makes the
determinant of a matrix change sign.

2. Multiplying a row by a constant c: This operation makes the
determinant of a matrix M change to cdet(M).

3. Setting row ri = ri + c ∗ rj for some constant c and distinct row
Rj : This operation does nothing to the determinant.

It clearly follows that for an elementary matrix Ei = Oi(I), EiB =
Oi(B), where Oi(M) is elementary row operation i just listed (i ∈
{1, 2, 3}) applied to matrix M . In other words, whatever row operation
was used to obtain Ei from I can be applied to B to obtain EiB.

It follows that

det(EiB) = det(Oi(B)) =


−det(B) if i = 1
c ∗ det(B) if i = 2

det(B) if i = 3
=


det(Ei)det(B) if i = 1
det(Ei)det(B) if i = 2
det(Ei)det(B) if i = 3

,

as desired.

(d) For a non-singular matrix, det(A−1) = 1/ det(A).

Solution: We have

1 = det(I) = det(AA−1) = det(A) det(A−1),

where I is the identity matrix, so det(A−1) = 1/ det(A).
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Problem 1.3

Consider the (k + m)-dimensional matrix M =
[
A B
C D

]
, where A ∈ Rk×k,

D ∈ Rm×m, B ∈ Rk×m and C ∈ Rm×k.

(a) If B = 0 and C = 0, show that det(M) = det(A) det(D).

Solution: Note that ifB = 0 and C = 0, then the eigenvalues ofM are
the union of the eigenvalues of A and the eigenvalues of D. Recalling
that the determinant of a matrix is the product of its eigenvalues gives
us the result.

(b) If A is invertible, show that det(M) = det(A) det(D − CA−1B).

Solution: We first prove the statement when B = 0. Recall the
Leibniz formula for determinant:

detM =
∑

σ∈Sk+m

sgn(σ)
k+m∏
i=1

Mi,σi . (1)

Here, Sk+m is the symmetric group of all permutations of the set
{1, . . . , k+m}, and sgn(σ) is the sign of permutation σ (i.e. sgn(σ) =
(−1)τ where τ is the number of transpositions in the decomposition
of σ). Note that since B = 0, we have Mi,σi = 0 whenever 1 ≤ i ≤ k
and k+ 1 ≤ σi ≤ k+m. Thus, the only nonzero terms in (1) are from
the permutations σ that permute {1, . . . , k} and {k + 1, . . . , k + m}
separately. The set of such permutations is isomorphic to the product
Sk×Sm, and the signature of such permutations σ = (σ(1), σ(2)) ∈ Sk×
Sm can also be factorized as sgn(σ) = sgn(σ(1)) sgn(σ(2)). Therefore,

det(M) =
∑

σ=(σ(1),σ(2))∈Sk×Sm

sgn(σ)
k+m∏
i=1

Mi,σi

=
∑

σ(1)∈Sk

∑
σ(2)∈Sm

sgn(σ(1)) sgn(σ(2))
k∏
i=1

M
i,σ

(1)
i

m∏
i=1

M
k+i,σ

(2)
i

=
( ∑
σ∈Sk

sgn(σ)
k∏
i=1

Mi,σi

) ( ∑
σ∈Sm

sgn(σ)
m∏
i=1

Mk+i,σi

)
= det(A) det(D).

The same method also works to prove the statement when C = 0.
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Now noting that we can factorize

M =
[
A B
C D

]
=
[
A 0
C I

] [
I A−1B
0 D − CA−1B

]
,

the general result follows from the multiplicativity of determinant and
the two special cases above.

Problem 1.4
Prove or disprove: a symmetric matrix A is positive semidefinite if and only
if trace(AB) ≥ 0 for all symmetric positive semidefinite matrices B.
Solution: We prove the statement above. If A � 0 (i.e. A is positive
semidefinite), then for any B � 0 we have

trace(AB) = trace(AB1/2B1/2) = trace(B1/2AB1/2) ≥ 0,

sinceB1/2AB1/2 is also positive semidefinite. Conversely, suppose trace(AB) ≥
0 for all B � 0. Taking B = xx> for x ∈ Rn, where n is the size of A, we
get

x>Ax = trace(x>Ax) = trace(Axx>) = trace(AB) ≥ 0.

This shows that A � 0.

Problem 1.5
Let X = (X1, . . . , Xn) be a jointly Gaussian random vector with mean
µ ∈ Rn and covariance matrix Σ. Let W = (W1, . . . ,Wn) be a second
jointly Gaussian random vector with mean ν and covariance Λ.

(a) LetA andB be n×nmatrices, and form the random vector Y = AX +BW .
Compute the mean vector and covariance matrix of Y . (Your answer
can involve cov(X,W ).)

Solution: The mean vector of Y is

E[Y ] = AE[X] +BE[W ] = Aµ+Bν,

and the covariance matrix is

cov(Y ) = cov(AX +BW,AX +BW )

= A cov(X,X)A> +A cov(X,W )B> +B cov(W,X)A> +B cov(W,W )B>

= AΣA> +A cov(X,W )B> +B cov(X,W )>A> +BΛB>.
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(b) How does your answer change if X and W are uncorrelated?

Solution: If cov(X,W ) = 0, then E[Y ] is the same as in part (a)
above, but the covariance matrix now becomes

cov(Y ) = AΣA> +BΛB>.

Problem 1.6
Craig is doing a study of moose in the Alaskan wilderness, and wants to
estimate their heights. Let X be the height in meters of a randomly selected
moose. Craig is interested in estimating h = E[X]. Being sure that no moose
is taller than 3 meters, Craig decides to use 1.5 meters as a conservative
(large) value for the standard deviation of X. To estimate h, Craig compute
the average H of the heights of n moose that he selects at random.

(a) Compute E[H] and var(H) in terms of h and Craig’s 1.5 meter bound
for std(X).

Solution: Let X1, . . . , Xn be the heights of the moose that Craig
selects at random, so X1, . . . , Xn are i.i.d. with the same distribution
as X, and we can write H = 1

n

∑N
i=1Xi. The expectation of H is

E[H] =
1
n

n∑
i=1

E[Xi] = E[X] = h,

and, assuming std(X) = 1.5, the variance of H is

var(H) =
1
n2

n∑
i=1

var(Xi) =
var(X)
n

=
1.52

n
.

(b) Compute the minimum value of n (with n > 0) such that the standard
deviation of H will be less than 0.01 meters.

Solution: We want

std(H) =
1.5√
n
< 0.01 ⇐⇒ n > 1502,

so the minimum such n is 1 + 1502 = 22, 501.

(c) Say Craig would like to be 99% sure that his estimate is within 5
centimeters of the true average height of moose. Using the Chebyshev
inequality, calculate the minimum value of n required.
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Solution: By Chebyshev inequality,

P(|H − h| ≥ 0.05) ≤ var(H)
0.052

=
900
n
,

so for H to be within 5 centimeters of h with 99% certainty, Craig
would need

1− 900
n
≥ 0.99 ⇐⇒ n ≥ 90, 000.

(d) If we agree that no moose are taller than three meters, why is it correct
to use 1.5 meters as an upper bound on the standard deviation for X,
the height of any moose selected at random?

Solution: Recall that h = E[X] is the value that minimizes the func-
tion x 7→ E[(X − x)2]. Therefore, since 0 ≤ X ≤ 3,

var(X) = E[(X − h)2] ≤ E
[(
X − 3

2

)2]
≤
(

3
2

)2

=
9
4
,

and hence std(X) ≤ 3/2 = 1.5.

Problem 1.7
A group of N archers shoot at a target. The distance of each shot from the
center of the target is uniformly distributed between 0 to 1, independently
of the other shots.

(a) Find the expected distance from the winner’s arrow to the center.
(The winner’s arrow is closest to the origin.)

Solution: Let U1, . . . , UN
i.i.d.∼ Uniform([0, 1]) denote the distances of

the shots from the center of the target, and let WN = min(U1, . . . , UN )
denote the distance from the winner’s arrow to the center. Then

E[WN ] =
∫ 1

0
P(WN ≥ t) dt =

∫ 1

0

N∏
i=1

P(Ui ≥ t) dt

=
∫ 1

0
(1− t)N dt =

1
N + 1

.

(b) Find the expected distance from the loser’s arrow to the center. (The
loser’s arrow is the arrow farthest away from the origin).
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Solution: Let LN = max(U1, . . . , UN ) denote the distance from the
loser’s arrow to the center. Clearly

P(LN ≤ t) =
N∏
i=1

P(Ui ≤ t) = tN for 0 ≤ t ≤ 1,

so LN has density function fLN
(t) = NtN−1. Therefore,

E[LN ] =
∫ 1

0
tfLN

(t) dt =
∫ 1

0
NtN dt =

N

N + 1
.

Problem 1.8
Every day that he leaves work, Fred the Absent-minded Accountant toggles
his light switch according to the following protocol: (i) if the light is on, he
switches it off with probability 0.60; and (ii) if the light is off, he switches it
on with probability 0.20. At no other time (other than the end of each day)
is the light switch touched.

(a) Suppose that on Monday night after leaving work, Fred’s office is
equally likely to be light or dark. What is the probability that his
office will be lit all five nights of the week (Monday through Friday)?

Solution:

Number Monday - Friday consecutively from 1 - 5. Let Xi = 1 if the
light is on the evening of day i and 0 otherwise. It is given that the
probability the light is left on Monday night is 1/2. Hence

P [X1, . . . , X5 = 1] = P [X1 = 1]P [X2, . . . , X5 = 1]
= P [X1 = 1]P [X2 = 1]4

= (1/2)(1− .6)4 = .0128

(b) Suppose that you observe that his office is lit on both Monday and
Friday nights after work. Compute the expected number of nights,
from that Monday through Friday, that his office is lit.

Solution:

Number Monday - Friday consecutively from 1 - 5. Let Xi = 1 if the
light is on the evening of day i and 0 otherwise.

P (X2, X3, X4 | X1 = 1, X5 = 1) =
P (X2, X3, X4, X5 = 1 | X1 = 1)

P (X5 = 1 | X1 = 1)
(2)
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Also,

E[
∑n

i=1Xi] = 2P (X2 = 0, X3 = 0, X4 = 0 | X1 = 1, X5 = 1)
+3[P (X2 = 1, X3 = 0, X4 = 0 | X1 = 1, X5 = 1)+
P (X2 = 0, X3 = 1, X4 = 0 | X1 = 1, X5 = 1)+
P (X2 = 0, X3 = 0, X4 = 1 | X1 = 1, X5 = 1)]

+4[P (X2 = 1, X3 = 1, X4 = 0 | X1 = 1, X5 = 1)+
P (X2 = 1, X3 = 0, X4 = 1 | X1 = 1, X5 = 1)+
P (X2 = 0, X3 = 1, X4 = 1 | X1 = 1, X5 = 1)]

+5P (X2 = 1, X3 = 1, X4 = 1 | X1 = 1, X5 = 1)

Let z = P (X5 = 1 | X1 = 1), then applying 2 we get that, for

zE[
∑n

i=1Xi] = 2P (X2 = 0, X3 = 0, X4 = 0, X5 = 1 | X1 = 1)
+3[P (X2 = 1, X3 = 0, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 1, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 0, X4 = 1, X5 = 1 | X1 = 1)]

+4[P (X2 = 1, X3 = 1, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 1, X3 = 0, X4 = 1, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 1, X4 = 1, X5 = 1 | X1 = 1)]

+5P (X2 = 1, X3 = 1, X4 = 1, X5 = 1 | X1 = 1)
= 2(.6)(.8)(.8)(.2) + 3 [(.4)(.6)(.8)(.2) + (.6)(.2)(.8)(.2) + (.6)(.8)(.2)(.4)]

+4 [(.4)(.4)(.6)(.2) + (.4)(.6)(.2)(.4) + (.6)(.2)(.4)(.4)] + 5(.4)(.4)(.4)(.4)
= .8

Solving for z:

z = P (X2 = 0, X3 = 0, X4 = 0, X5 = 1 | X1 = 1)
+[P (X2 = 1, X3 = 0, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 1, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 0, X4 = 1, X5 = 1 | X1 = 1)]

+[P (X2 = 1, X3 = 1, X4 = 0, X5 = 1 | X1 = 1)+
P (X2 = 1, X3 = 0, X4 = 1, X5 = 1 | X1 = 1)+
P (X2 = 0, X3 = 1, X4 = 1, X5 = 1 | X1 = 1)]

+P (X2 = 1, X3 = 1, X4 = 1, X5 = 1 | X1 = 1)
= (.6)(.8)(.8)(.2) + [(.4)(.6)(.8)(.2) + (.6)(.2)(.8)(.2) + (.6)(.8)(.2)(.4)]

+ [(.4)(.4)(.6)(.2) + (.4)(.6)(.2)(.4) + (.6)(.2)(.4)(.4)] + (.4)(.4)(.4)(.4)
= .256

Hence, the expected number of nights the light will be on is

E

[
n∑
i=1

Xi

]
= .8/.256 = 3.125.
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(c) Suppose that Fred’s office is lit on Monday night after work. Compute
the expected number of days until the first night that his office is dark.

Solution: Let L denotes the number of days until the first night his
office is dark. Then

P(L = 1) = P(x2 = 0|x1 = 1) = 0.6
P(L = 2) = P(x3 = 0, x2 = 1|x1 = 1) = 0.4× 0.6
P(L = 3) = P(x4 = 0, x3 = 1, x2 = 1|x1 = 1) = 0.4× 0.42 × 0.6
P(L = 4) = P(x5 = 0, x4 = 1, x3 = 1, x2 = 1|x1 = 1) = 0.43 × 0.6
P(L = 5) = P(x5 = 1, x4 = 1, x3 = 1, x2 = 1|x1 = 1) = 0.44

Thus, the expectation is

EL =
5∑
l=1

l · P(L = l)

= 1× 0.6 + 2× 0.4× 0.6 + 3× 0.42 × 0.6 + 4× 0.43 × 0.6 + 5× 0.44

= 1.6496

Now suppose that Fred has been working for five years (i.e., assume that
the Markov chain is in steady state).

(d) Is his light more likely to be on or off at the end of a given workday?

Solution: We have transition matrix

P =
[
.8 .2
.6 .4

]
.

We wish to find the stable distribution (π0, π1), where .

π0 = P(x = 0)
π1 = P(x = 1)

We know that
(π0, π1)P = (π0, π1).
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And we know that π0 + π1 = 1 so we can get:

π0 = 0.75
π1 = 0.25

so the light is more likely to be off.
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