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Abstract

Regression adjustments are often made to experimental data. Since random-
ization does not justify the models, almost anything can happen. Here, we evaluate
results using Neyman’s non-parametric model, where each subject has two potential
responses, one if treated and the other if untreated. Only one of the two responses
is observed. Regression estimates are generally biased, but the bias is small with
large samples. Adjustment may improve precision, or make precision worse; stan-
dard errors computed according to usual procedures may overstate the precision, or
understate, by quite large factors. Asymptotic expansions make these ideas more
precise.
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1. Introduction

Experimental data are often analyzed using regression models. In this paper,
we examine the behavior of regression estimates in Neyman’s model [5, 18], where
each subject has two potential responses. One is observed if the subject is assigned to
treatment, the other is observed if the subject is assigned to control. The “intention-
to-treat” parameter, bITT, is the average response if all subjects are assigned to
treatment, minus the average response if all subjects are assigned to control. In the
design we consider, m out n subjects are chosen at random for treatment, and the
remaining n−m are assigned to control. (This excludes stratified designs, blocking,
and so forth.)

In brief, let Y be the observed response. Let X be the assignment variable,
taking the value 1 if the subject is assigned to treatment and 0 otherwise. We
compare three estimators of bITT. The intention-to-treat estimator, b̂ ITT, is the
difference between the average response in the treatment group and the control
group. The simple regression estimator, b̂SR, is obtained by running a regression
of the observed response Y on the assignment variable X; there is an intercept in
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the equation. For the third estimator, let Z be a covariate which is not affected by
treatment: for example, Zi might be a characteristic of subject i measured before
assignment to treatment or control. The multiple regression estimator, b̂MR, is
obtained by running a regression of Y on X and Z; again, there is an intercept.

As is well known, the intention-to-treat estimator is exactly unbiased; fur-
thermore, the simple regression estimator coincides with the ITT estimator. The
following results, however, may be somewhat surprising.

(i) The multiple regression estimator is biased; the bias tends to 0 as the
number of subjects increases.

(ii) Asymptotically, the multiple regression estimator may perform worse than
the simple regression estimator.

(iii) “Nominal” standard errors (computed from the usual formulas) can be
severely biased.

(iv) The nominal standard error for the simple regression estimator may differ
from the nominal standard error for the intention-to-treat estimator—even
though the two estimators coincide.

The reason for the breakdown is not hard to find: randomization does not not
justify the assumptions behind the OLS model. Indeed, the assignment variable
(to treatment or control) and the error term in the model will generally be strongly
related. This will be detailed below, along with some asymptotic expansions that
provide analytical proofs for the results listed above.

2. Simple regression

Index the subjects by i = 1, . . . , n. Let Ti be the response of subject i if i
is assigned to treatment, and let Ci be the response of subject i if i is assigned to
control. For now, these are fixed numbers. (The extension to random responses is
easy, and will not be considered here.) The investigator can choose to observe either
Ti or Ci , but the two responses cannot be observed simultaneously. Let Xi be the
assignment variable: Xi = 1 if subject i is assigned to treatment, and Xi = 0 if
subject i is assigned to control. The observed response is

(1). Yi = XiTi + (1 −Xi)Ci.
If i is assigned to treatment, thenXi = 1 and Yi = Ti : it is the response to treatment
that is observed. If i is assigned to control then Xi = 0 and Yi = Ci : the response
to the control condition is observed. The ITT estimator is

(2) b̂ITT =
(

1

m

∑
i

{Yi : Xi = 1}
)

−
(

1

n−m
∑
i

{Yi : Xi = 0}
)
,

with n being the number of subjects andm = ∑
Xi the size of the treatment group.

The simple regression estimator b̂SR is the coefficient of X in a regression of Y on
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1 and X. The following well known theorem is arithmetic in nature. There are no
conditions on the joint distribution of the Xi : what matters is that Xi = 0 or 1.

Theorem 1. If 0 < m < n, then b̂SR = b̂ITT.

Proof. Write “ave” for the average across all subjects, and let � run over all
subjects too. Let p = m/n. Now

b̂ITT = �XiYi

�Xi
− �(1 −Xi)Yi

�(1 −Xi)
= ave(XY)

ave(X)
− ave(Y )− ave(XY)

1 − ave(X)

= ave(XY)− ave(X)ave(Y )

p(1 − p)
= cov(X, Y )

var(X)

= b̂SR.

Here,

cov(X, Y ) = ave(XY)− ave(X)ave(Y ).

var(X) = ave(X2)− [ave(X)]2.

Finally

ave(X) = p, var(X) = p(1 − p),
because m of the Xi are equal to 1, and m/n = p. QED

Discussion

(i) The “nominal variance” for the simple regression estimator is obtained by the
usual computation, as the (2,2) element of σ̂ 2(M ′M)−1 where σ̂ 2 is the mean square
of the residuals and M is the design matrix, which will be defined more carefully
below. The nominal variance for the ITT estimator is v̂T /m+ v̂C/(n−m), where
v̂T is the sample variance in the treatment group and v̂C is the sample variance in
the control group. Although b̂SR = b̂ITT, the two variances may be quite different:
the regression formulas assume homoscedasticity, whereas the ITT formulas adjust
for heteroscedasticity.

(ii) Even if Yi = 0 or 1, Theorem 1—like the other theorems below—covers
OLS; logits and probits would require a separate discussion.

3. The statistical model

As before, each subject has two potential responses Ti and Ci , and Xi is the
assignment variable. The observed response is Yi = XiTi + (1 − Xi)Ci . The Ti
and Ci are fixed, subject-level parameters. Population-level parameters are defined
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as follows:

(3) T = 1

n

n∑
i=1

Ti, C = 1

n

n∑
i=1

Ci, b = T − C.

The parameter b is the intention-to-treat parameter, also called the average treat-
ment effect, or the average causal effect. See, for instance, Holland [14]. What b
represents is a differential: the effect of assigning everybody to treatment, minus
the effect of assigning them to control. This parameter is the one of interest here.

We assume that m out n subjects are assigned at random to treatment, the
remainingn−m subjects being assigned to control. Under this assumption, Theorem
2 is a well-known result: the intention-to-treat estimator is unbiased.

Theorem 2. E
(
b̂ITT

) = b.

The proof is omitted, as it boils down to an even better known fact: with simple
random samples, the sample average is an unbiased estimator for the population
average. To investigate the regression estimator, it will convenient to rewrite (1) as
follows:

(4) Yi = a + b(Xi − p)+ δi,
where

(5a) a = pT + (1 − p)C, b = T − C,

(5b) αi = p(Ti − T )+ (1 − p)(Ci − C), βi = (Ti − T )− (Ci − C),

(5c) δi = αi + βi(Xi − p).
Centering Xi at p in (4) does not affect the estimators, and simplifies the

asymptotics below. Equation (4) is nothing like a standard regression model. The
randomness in δi is due entirely to randomness in Xi , so the error term is strongly
dependent on the explanatory variable. The δ’s are not IID, nor do they have mean
0. On the other hand, by (5b),

(6)
n∑
i=1

αi =
n∑
i=1

βi = 0.

So E[(Xi − p)δi] = p(1 − p)βi sums to 0 over all subjects. Finally,

(7) E(δi) = αi

sums to 0 over all subjects. These are weak forms of orthogonality.
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We turn now to the assignment variables, which are a little dependent because
their sum is fixed. However, they are exchangeable, and behave in other ways very
much like coin-tossing, at least when n is large. For example,

(8a) P {Xi = 1} = p, P {Xi = 0} = 1 − p,

(8b) E(Xi) = p, var(Xi) = p(1 − p),

(8c) cov(Xi,Xj ) = −p(1 − p)
n− 1

if i �= j.

In the display, p = m/n, while cov(Xi,Xj ) = E(XiXj ) − E(Xi)E(Xj ) and
var(Xi) = cov(Xi,Xi).

The setup here applies when there is one treatment group, one control group,
and subjects are chosen at random without replacement for the treatment group.
More complex designs with blocking and stratification are not covered by the present
theorems.

The distinction between “observables” and “unobservables” is important. For-
mally, our estimators are defined in terms of observable random variables like
Xi, Yi, Zi ; unobservable parameters like Ti and Ci do not enter into the formu-
las.

In the simple regression model (4), and the multiple regression model below,
the random element is the assignment to treatment or control. Conditional on the
Xi , the Yi are fixed (not random)—and so are the “error terms” δi in (4): see (5c).

4. Asymptotics: simple regression

We turn now to the asymptotics of the simple regression estimator, using the
notation of the previous section. In principle, our inference problem is embedded
in an infinite sequence of such problems, with the number of subjects n increasing
to infinity. Parameters like p, the fraction of subjects assigned to treatment, should
be subscripted by n, with the assumption pn → p and 0 < p < 1. Instead, we
say that np subjects are assigned to treatment. Similarly, parameters like αi in (5)
should be doubly subscripted, and we should assume that

1

n

n∑
i=1

α2
i,n → α2,

rather than the simpler formula in (9a) below. The additional rigor is not worth the
notational price. In the same spirit, our moment conditions are fairly restrictive,
the object being to minimize technicalities rather than maximize generality. The
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symbol α2 in the display merely denotes the value of a limit; likewise for αβ and
β2, introduced below.

With these understandings, we write the conditions as follows:

(9a)
1

n

n∑
i=1

α2
i → α2,

1

n

n∑
i=1

αiβi → αβ,
1

n

n∑
i=1

β2
i → β2,

where α2, αβ, and β2 are fixed real numbers. Plainly, α2 ≥ 0, β2 ≥ 0. We also
require bounded fourth moments:

(9b)
1

n

n∑
i=1

α4
i < K < ∞, 1

n

n∑
i=1

β4
i < K < ∞,

and

(9c) 0 < p < 1.

Condition (9) may seem unfamiliar, but similar conditions are used to derive con-
sistency and asymptotic normality for OLS estimators. See Drygas [7], Anderson
and Taylor [1], Freedman [8], or pp. 66ff in Greene [12]. Let

(9d) γ = lim
1

n

n∑
i=1

[αi + (1−2p)βi]
2 = α2 +2(1−2p)αβ+ (1−2p)2β2 ≥ 0.

Theorem 3. Under condition (9), the simple regression estimator is asymp-
totically normal with mean b and variance γ /[np(1 − p)] , i.e., the distribution of√
n(b̂SR − b) converges to N

(
0, γ /[p(1 − p)]).

Proof. The design matrix is

M =




1 X1 − p
1 X2 − p
...

...

1 Xn − p


 .

(Centering Xi at p does not change b̂SR and does simplify the calculation.) Since
X1 + · · · +Xn is fixed at np by construction,

M ′M/n =
(

1 0
0 p(1 − p)

)
, (M ′M/n)−1 =

(
1 0
0 1/[p(1 − p)]

)
.
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If Y is the column vector of responses Yi , then

M ′Y/n =
(

�iYi/n

�i(Xi − p)Yi/n
)

and

(10) p(1 − p)b̂SR = 1

n

n∑
i=1

(Xi − p)Yi.

Recall from (4) that Yi = a + b(Xi − p)+ δi . Furthermore, �i(Xi − p) = 0
while �i(Xi − p)2 = np(1 − p), because np subjects have Xi = 1 and the rest
have Xi = 0. Substitution into (10) gives

(11) p(1 − p)(b̂SR − b) = 1

n

n∑
i=1

(Xi − p)δi .

Let U be the quantity on the right hand side of (11). By (5c),

(12) U = 1

n

n∑
i=1

[
αi(Xi − p)+ βi(Xi − p)2

]
.

We have now arrived at the crux of the proof, and must show that U is asymp-
totically normal, with mean 0 and asymptotic variance γp(1−p)/n. To begin with,
X2
i = Xi , so

(13) αi(Xi − p)+ βi(Xi − p)2 = [
αi + (1 − 2p)βi

]
Xi − αip + βip2.

Next, �i αi = �i βi = 0, by (6). The last two terms on the right in (13) can
therefore be dropped, i.e.,

(14) U = 1

n

n∑
i=1

[
αi + (1 − 2p)βi

]
Xi.

Visualize U in (14) as 1/n times the sum of np draws made at random without
replacement from a box of n tickets, the ith ticket being marked with the number
αi + (1 − 2p)βi . The average of the tickets is 0, again by (6). Now U has mean 0
and variance

(15)
1

n2 × np × n(1 − p)
n− 1

× 1

n

n∑
i=1

[αi + (1 − 2p)βi]
2 ≈ γp(1 − p)

n
,

where cn ≈ dn means that cn/dn → 1. The third factor on the left side of (15)
is the “finite sample correction factor.” Asymptotic normality follows, e.g., from
Högland [13], who gives a Berry-Esseen type of bound. Look back at (11): divide
the right side of (15) by [p(1 − p)]2 to complete the proof of Theorem 3. QED

Discussion.

(i) Since b̂ITT = b̂SR, the theorem also gives the asymptotic distribution of the
ITT estimator.



8 David A Freedman

(ii) As (9d) shows, γ ≥ 0. If γ = 0, the theorem asserts that
√
n(b̂SR −b) → 0

in probability. A little more is true. If αi = βi = 0 for all i then Ti = T andCi = C

for all i; there is no variance in b̂SR: see (5). If αi = 0 for all i and p = 1/2,
then Ti − T = −(Ci − C) for all i; there is again no variance in b̂SR. Either way,
b̂SR = b for all assignments.

(iii) The condition β ≡ 0 will recur. The meaning is simple: Ti = Ci + b for
all i. In other words, for any subject, treatment adds the constant b. There is still
variance in b̂ITT, because Ci can vary from one subject to another, so the average of
theCi across the treatment and control groups will depend on theXi . The deviation
of Ci from the population average C is captured by αi .

5. Asymptotics: multiple regression

LetZi be a covariate defined for each subject i. ThisZi is observable. Implicit
in the notation is the idea that Zi remains the same, whether Xi = 1 or Xi = 0.
Without loss of generality, we may standardize:

(16a)
1

n

n∑
i=1

Zi = 0,
1

n

n∑
i=1

Z2
i = 1.

In addition, we assume

(16b)
1

n

n∑
i=1

αiZi → αZ,
1

n

n∑
i=1

βiZi → βZ,
1

n

n∑
i=1

Z4
i < K < ∞,

where α, β were defined in (5). As before, αZ and βZ are fixed real numbers—the
limiting values in (16b). Let

(16c) γ ′ = γ − (αZ)2 − 2(1 − 2p)(αZ)(βZ),

where γ was defined in (9d). The multiple regression estimator b̂MR is the coefficient
of X in a regression of Y on 1, X, and Z; equivalently, the coefficient of X−p in a
regression of Y on 1,X−p, andZ. The latter formulation will be more convenient.

Theorem 4. Under conditions (9) and (16), the multiple regression estima-
tor is asymptotically normal with mean b and variance γ ′/[np(1 − p)] , i.e., the
distribution of

√
n(b̂MR − b) converges to N

(
0, γ ′/[p(1 − p)]).

Proof. The proof is like that for Theorem 3; some details are omitted. To begin
with, the design matrix is

M =




1 X1 − p Z1
1 X2 − p Z2
...

...

1 Xn − p Zn


 .



Regression Adjustment 9

(Centering Xi at p doesn’t affect b̂MR and does simplify the calculation.) Thus,

M ′M/n =
( 1 0 0

0 p(1 − p) ξ

0 ξ 1

)
,

where

ξ = 1

n

n∑
i=1

Zi(Xi − p)

is by previous arguments asymptotically normal with mean 0 and variance on the
order of 1/n. Now det(M ′M/n) = p(1 − p)+O(1/n) in probability, and

(M ′M/n)−1 =
( 1 0 0

0 1/[p(1 − p)] −ξ/[p(1 − p)]
0 −ξ/[p(1 − p)] 1

)
+O

(1

n

)
.

Next,

M ′Y/n =
(

�iYi/n

�i(Xi − p)Yi/n
�iZiYi/n

)
.

In consequence,

(17) p(1 − p)b̂MR = 1

n

n∑
i=1

(Xi − p)Yi − ξ 1

n

n∑
i=1

ZiYi +O
(1

n

)
.

Substitute (4) into (17) and use the argument in (11–14):

(18) p(1 − p)(b̂MR − b) = U − ξV +O
(1

n

)
,

where

U = 1

n

n∑
i=1

[αi + (1 − 2p)βi]Xi

and

V = 1

n

n∑
i=1

Zi[a + b(Xi − p)+ δi].

The a-term in V vanishes because �iZi = 0. The b-term in V is bξ , which
contributes bξ2 = O(1/n) to ξV in (18). Thus, we may improve (18) as follows:

(19) p(1 − p)(b̂MR − b) = U − ξV ′ +O
(1

n

)
,where V ′ = 1

n

n∑
i=1

Ziδi .

Substitute δi = αi + βi(Xi − p) from (5c) into the formula for V ′. The α-term in
δ contributes ξθ to ξV ′, where

(20) θ = 1

n

n∑
i=1

αiZi.
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The β-term contributes ξζ , where

(21) ζ = 1

n

n∑
i=1

βiZi(Xi − p).

But ξζ = O(1/n). Indeed, ξ is asymptotically normal with mean 0 and variance on
the order of 1/n. The same is true of ζ . In more detail, the argument for asymptotic
normality of U in the previous section can be adapted to cover ζ in (21): center
βiZi and drop p; or, compute the mean and variance of ξ , ζ and use Chebychev’s
inequality. This completes our discussion of ξζ . In sum, ξV ′ = ξθ +O(1/n).

Recall that ξ = 1
n

∑
i Zi(Xi − p) = 1

n

∑
i ZiXi because

∑
i Zi = 0. On this

basis, (19) shows that

p(1 − p)(b̂MR − b) =
(

1

n

n∑
i=1

[
αi + (1 − 2p)βi

]
Xi

)
− ξθ +O

(1

n

)

=
(

1

n

n∑
i=1

[
αi − θZi + (1 − 2p)βi

]
Xi

)
+O

(1

n

)
.

Conditions (9) and (16) entail θ → αZ, and then

(22) lim
1

n

n∑
i=1

[
αi − θZi + (1 − 2p)βi

]2 = γ ′,

where γ ′ is defined by (16c) and (9d). The rest of the argument is the same as for
Theorem 3. QED

Discussion

(i) By construction, 1
n

∑n
1 αi = 1

n

∑n
1 Zi = 0 and 1

n

∑n
1 Z

2
i = 1, so θZ is the

regression of α on Z, and α − θZ is the residual vector.

(ii) γ ′ ≥ 0. If γ ′ = 0, Theorem 4 asserts that
√
n(b̂MR −b) → 0 in probability.

(iii) Preliminary calculations suggest the bias in b̂MR is B/n + O(1/n3/2),
where B = − lim 1

n

∑n
i=1 βiZ

2
i , assuming the limit exists and Z is standardized as

above.

6. The gain from adjustment

Compare Theorems 3 and 4 to see that the asymptotic gain from adjustment—
the reduction in asymptotic variance—is

(23)
(

np(1 − p), where ( = (αZ)
[
(αZ)+ 2(1 − 2p)(βZ)

]
.
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If p = 1/2, adjustment is either neutral or helps, because (αZ)2 ≥ 0. If p �= 1/2,
then adjustment may hurt. For example, take αZ > 0 and p > 1/2. Another option
is to take αZ < 0 and p < 1/2. Either way, take βZ large and positive. If Ti = Ci
for all i (the “strict null hypothesis”), then β ≡ 0 and adjustment will help—unless
αZ = 0, i.e., the remaining variation (in Ci) is orthogonal to the covariate. A more
interesting case to consider is the analysis of covariance with unequal numbers of
subjects in treatment and control, and limiting quantities in (9a) and (16b) nontrivial.

7. The nominal variance

We turn to the asymptotic behavior of the “nominal” variances, that is, variances
computed using the conventional formulas. Details are omitted, being very similar
to those in Sections 3 and 4. Only convergence in probability is claimed, although
a.s. convergence seems within reach. We follow the notation of Section 3.

Theorem 5. Assume (9). Let σ̂ 2 be the mean square residual from the regres-
sion of Y on 1 andX−p. Let v̂ be the nominal variance for the coefficient ofX−p,
i.e., σ̂ 2 times the (2, 2) element of (M ′M)−1, whereM is the design matrix. Then

(i) σ̂ 2 → σ 2 = α2 + p(1 − p)β2.

(ii) np(1 − p)v̂ → σ 2.

Theorem 6. Assume (9) and (16). Let σ̂ 2 be the mean square residual from
the regression of Y on 1, X − p, and Z. Let v̂ be the nominal variance for the
coefficient of X − p, i.e., σ̂ 2 times the (2, 2) element of (M ′M)−1, where M is the
design matrix. Then

(i) The intercept tends to a, the coefficient of X − p tends to b, and the
coefficient of Z tends to αZ.

(ii) σ̂ 2 → σ 2 = α2 − (αZ)2 + p(1 − p)β2.

(iii) np(1 − p)v̂ → σ 2.

Discussion

(i) For the notation, the constants a, b were defined in (5); α2, αβ, and β2

were defined in (9); αZ and βZ were defined in (16).

(ii) For the simple regression estimator, the asymptotic variance is

γ /[np(1 − p)] :

see (9) and Theorem 3. If p = 1/2, then γ ≤ σ 2; the inequality is strict unless
β ≡ 0. If p �= 1/2, the inequality can go either way: the nominal variance can be
too big, or too small.
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(iii) For the multiple regression estimator, the asymptotic variance is

γ ′/[np(1 − p)] :

see (16) and Theorem 4. Again, if p = 1/2, then γ ′ ≤ σ 2; the inequality is strict
unless β ≡ 0. If p �= 1/2, the inequality can go either way: the nominal variance
can be too big, or too small.

(iv) Calculations like those above give the asymptotic nominal variance of the
ITT estimator as γ ′′/np(1 − p), where

γ ′′ = α2 + 2(1 − 2p)αβ + [p3 + (1 − p)3]β2.

Compare this with (9d): asymptotically, the nominal variance for the ITT estimator
is conservative, by a considerable margin when β2 is large.

(v) The multiple regression model can be compared explicitly to the simple
regression model in (4): according to the multiple regression model,

Yi = a + b(Xi − p)+ θZi + δ′i ,

where
δ′i = δi − θZi = (αi − θZi)+ βi(Xi − p).

The quantities a, b, δ were defined in (5), and θ was defined in (20). In essence, part
of δ has been explained by Z. If the error term satisfied the usual assumptions—but
it doesn’t—explaining part of δ would reduce the variance in b̂.

(vi) How can we get to the usual multiple regression model from here? The idea
seems to be this. Let εi be independent and identically distributed across subjects
i. Let Ci = c + dZi + εi while Ti = b + c + dZi + εi , for suitable constants
b, c, d. Randomness in Ti andCi is easily accommodated. However, independence,
common distributions, and linearity of response—these are strong assumptions, not
justified by the randomization.

(vii) In a variety of examples, simulation results (not reported here) indicate
the following. When the number of subjects n is 100 or 250, bias in the multiple
regression estimator may be quite noticeable. If n is 500, bias is sometimes sig-
nificant, but rarely of a size to matter. With n = 1000, bias is negligible, and the
asymptotics seem to be quite accurate.

(viii) The simulations, like the analytic results, indicate a wide range of possible
behavior. For instance, adjustment may help or hurt. Nominal variances for the
regression estimators can be too big or too small, by factors that are quite large. The
simple regression estimator and the ITT estimator are the same, but their nominal
variances may differ. (The regression model assumes constant variance, but the
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nominal variance for the ITT estimator allows the treatment and control groups to
have different variances.)

(ix) The ultimate variables that need to be balanced are Ti and Ci . Other
variables are merely proxies: see Robins [22]. On the other hand, in practice, Ti and
Ci are unknown, and the available regressors may be only weakly related to Ti and
Ci—in which case the gains or losses from adjustment are likely to be minor. With
a real experiment, if adjustment made a substantial difference, we would suggest
much caution when interpreting results. That is the principal take-home message
from the theory developed here.

(x) Practitioners will doubtless be heard to object that they know all this per-
fectly well. Perhaps, but then why do they so often fit models without discussing
assumptions?

(xi) It appears that the theorems in the present paper can be proved by proba-
bilistic calculations, and extensions of Höglund’s central limit theorem [13] to the
multivariate case with multiple samples—rather than matrix asymptotics. Those
proofs would cover several levels of treatment, and several covariates.

(xii) The multiple regression estimator will be exactly unbiased in finite samples
under severe regularity conditions. For instance, with two levels of treatment, the
design should be balanced (p = 1/2) and there should be no subject-by-treatment
interactions (β ≡ 0).

8. Other literature

The Neyman model is reviewed in Freedman [9, 10], with pointers to current
literature on statistical models for causal inference, and discussion of the extent to
which randomization justifies the regression model. A useful text on the design and
analysis of clinical trials is Friedman, Furberg, and DeMets [11]. On study design
in the behavioral and social sciences, see Shadish, Cook, and Campbell [25], Brady
and Collier [3].

Data from many clinical trials are now filtered through the prism of conventional
models, even when study populations number in the tens of thousands, perhaps to
improve the balance between treatment and control groups, perhaps due to habit.
Some investigators explicitly recommend adjusting data from clinical trials, using
regression models and the like. A particularly enthusiastic paper is Victora, Habicht,
and Bryce [26]. However, the validity of assumptions behind the models is rarely
considered.

Two large clinical trials that attracted much attention at the time of writing
are Rossouw, Anderson, Prentice, et al. [23], Howard, Van Horn, Hsia, et al. [15].
These papers report data from the Women’s Health Initiative on the effects of hor-
mone replacement therapy and low-fat diets. The key tables only give estimates
from proportional-hazards models. Intention-to-treat analyses are not reported.
However, there is enough summary data so that intention-to-treat estimates can be
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reconstructed, and there is almost no difference between the modeling results and
the ITT estimates. Blocking cannot be accounted for without unpublished data, but
the combined effect of blocking and modeling is minor.

Substantive results should be mentioned: the experiments found no good effects
from any intervention tested, including hormone replacement therapy and low-fat
diets. On the other hand, a a modified Mediterranean diet shows great promise: see
de Lorgeril, Salen, Martin, et al. [6].

When there is a conflict between models and experiments, some investiga-
tors definitely prefer the models. See, for instance, Prentice, Langer, Stefanick, et
al. [20]. In this example, the models seem to lack adequate substantive foundations,
and were somewhat post hoc, as noted by Petitti and Freedman [19]. For addi-
tional discussion from various perspectives, see Prentice, Pettinger, and Anderson
[21]. Many social scientists analyze experimental data using regression models;
one recent example is Chattopadhyay and Duflo [4]. An interesting comparison of
model-based and intention-to-treat analyses will be found in Arceneaux, Gerber,
and Green [2].

For discussion from the modeling viewpoint, see Koch, Tangen, Jung, et
al. [16]. (By “non-parametric” analysis, these authors seem to mean fitting less-
restrictive parametric models.) Lesaffre and Senn [17] criticize [16], from a per-
spective similar to the one adopted here. These two papers focus on the analysis
of covariance. Also see Schmoor, Ulm, and Schumaker [24], who compare propor-
tional hazards to CART.

Acknowledgments. Persi Diaconis, Thad Dunning, Don Green, Winston Lin,
Stephen Senn, and Terry Speed made many useful comments.
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