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The discussion is keyed to the exercise on pp258–9 of FPP,† where pairs of kangaroos are
timed as they run a maze. To see if vitamins help, one animal in the pair is chosen at random for
treatment. (See also exercise 11, pp262-63, on the health effects of smoking, and exercise 11, p489,
on introductory pricing for cookies.)

Experimental units are indexed by i = 1, . . . , n. Each unit has a response aT
i if in treatment,

and aC
i if in control. The “strict” null hypothesis holds that aT

i = aC
i for all i; the “weak” null,

that 1
n

∑n
i=1 aT

i = 1
n

∑n
i=1 aC

i . If the null is rejected, there will be some interest in estimating the
average causal effect over the study population,

( 1
n

∑n
i=1 aT

i

)−( 1
n

∑n
i=1 aC

i

)
. Results are presented

here to suggest:

(i) The sign test is appropriate for the strict null; the weak null is better handled via a t-test on
paired differences, if pairing is to be done at all.

(ii) Pairing can help, or hurt. (In this respect, randomized experiments differ from stratified random
random sampling.)

On the strict null, aT
i = aC

i = ai . Suppose n = 2m and we pair unit i = 1, . . . , m with
unit m + i. The difference between the treatment unit and conrol unit is either ai − am+i = di or
am+i − ai = −di , at random. So, the sign test is in order. Turn now to the t-test.

Example 1. Suppose aT
i = 4 and aC

i = 3 for i = 1, . . . , m, whilst aT
i = 2 and aC

i = 1 for
i = m + 1, . . . , 2m. Recall that i is paired with m + i for i = m + 1, . . . , 2m. Each pair of units
can be represented graphically, as follows:

4:3 ↔ 2:1

For each pair, we see 4 − 1 = +3 or 2 − 3 = −1, at random. The sign test will indicate neutrality,
although treatment helps every unit. The t-test gives the right answer here: the average causal effect
would be estimated as (3 − 1)/2 = +1, with variances to be discussed below.

Example 2. Suppose aT
i = 4 and aC

i = 1 for i = 1, . . . , m, whilst aT
i = 2 and aC

i = 3 for
i = m + 1, . . . , 2m. The pairing is

4:1 ↔ 2:3

For each pair, we see 4 − 3 = +1 or 2 − 1 = +1, at random: i.e., we always see +1. The sign test
will indicate that treatment is uniformly successful, although treatment helps only half the units.
Again, the t-test gives the right answer. The average causal effect is estimated as +1, with no
variance.

We focus on Example 1, and consider three designs:

(A) Paired trials, as discussed above. The estimator is the average of the m sample differences.

† David Freedman, Robert Pisani, Roger Purves (2007). Statistics. 4th ed, Norton, New York.
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(B) Choose m units at random without replacement for treatment, the remaining units being
controls. The estimator is the sample average of the treatment units minus the sample
average of the control units.

(C) Flip a coin for each unit; if the coin lands 1, put the unit in treatment; if 0, in control.
With this design, we consider two estimators:

(C1) Take the sample sum of the treated units minus the sample sum of the control units,
and divide by m.

(C2) Take the sample average of the treated units minus the sample average of the control
units.

The estimators are all unbiased, with variances shown below; results for (C2) are asymptotic,
denominators being random. The paired estimator (A) is inefficient. The inefficiency may be
explained on the grounds that the pairing in Example 1 is perverse, since like and unlike are paired.
On the other hand, the equally-perverse pairing in Example 2 gives an estimator whose efficiency
is nonpareil. The estimator (C1) is very inefficient, since it does not adjust for difference in size
between treatment group and control group. However, (C2) is about as good as the best, namely,
(B)—which is based on a design with no pairing.

(A)
4

m

(B)
2

m

(
1 − 1

2m − 1

)

(C1)
58

4

1

m

(C2)
2

m

Proof of (A). Recall that the pairing is

4:3 ↔ 2:1

Let Xi = 1 or 0 with a 50–50 chance, independently for i = 1, . . . , m. If Xi = 1, the difference
between the treatment and control units is 4 − 1 = +3. If Xi = 0, the difference between the
treatment and control units is 2 − 3 = −1. The difference between the treatment and control units
in the ith pair is therefore 3Xi − (1 − Xi) = 4Xi − 1. Our estimator is

θ̂ = 1

m

m∑
i=1

(4Xi − 1)

whose expectation is 1 and whose variance is 4/m, as required.

Proof of (B). With this design, there is no pairing, Consider a finite population consisting of
m 1’s and m 0’s. We implement random assignment by taking a random permutation of the 1’s
and 0’s, with 1 standing for assignment to treatment and 0 for assignment to control. Let X be
the number of 1’s among the first m draws, i.e., the number of units i = 1, . . . , m assigned to
treatment. The number of such units assigned to control is m − X. The corresponding numbers
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for units i = m + 1, . . . , 2m are m − X and X, respectively. The sample sum of responses for
treatment units is 4X + 2(m − X) = 2X + 2m. The sample sum of responses for control units is
3(m − X) + X = 3m − 2X. The difference is 4X − m, and our estimator is

θ̂ = (4X − m)/m.

The expected value is 1. The variance is as required, because X is hypergeometric with

var(X) = m − 1

2m − 1

m

4
=
(

1 − 1

2m − 1

)m

8

Proof of (C1). Let Xi = 1 or 0 with a 50–50 chance, independently for i = 1, . . . , 2m. Let
X = ∑m

i=1 Xi , the number of treatment units among i = 1, . . . , m. Let Y = ∑2m
i=m+1 Xi , the

number of treatment units among i = m + 1, . . . , 2m. Now X and Y are independent Bin(n, 1/2).
The sample sum of treatment responses is 4X + 2Y . The sample sum of control responses is
3(m−X)+ (m−Y ). The difference is (7X −3m)+ (3Y −m) = 7X +3Y −4m. Our estimator is

θ̂ = (7X + 3Y − 4m)/m

The expectation is 1 and the variance is 58/(4m), as required. This estimator is particularly ineffi-
cient, because it does not adjust for the difference in sizes between treatment and control groups.
The next estimator fixes that problem; the calculation is asymptotic, because group sizes are random.

Proof of (C2). We use the same notation as in (C1). Our estimator is

θ̂ = θ̂1 − θ̂2

where

θ̂1 = 4X + 2Y

X + Y
, θ̂2 = 3(m − X) + (m − Y )

(m − X) + (m − Y )

We use the delta method. Dependence on m in suppressed in the notation: X = m/2 + √
m/4 ξ ,

where ξ → N(0, 1) as m → ∞. Likewise, Y = m/2 + √
m/4 η, where η → N(0, 1) as m → ∞.

The variables ξ and η are independent. The numerator of θ̂1 is 3m + √
m/4 (4ξ + 2η). The

denominator is m + √
m/4 (ξ + η) = m

(
1 + √

1/(4m) (ξ + η)
)
. Since 1/(1 + δ) = 1 − δ + O(δ2)

for small δ—and (ξ + η)/
√

m is small—the inverse of the denominator is

1

m

(
1 − 1

2

√
1

m
(ξ + η) + O

( 1

m

))

Thus,

θ̂1 =
(

3 + 1

2

√
1

m
(4ξ + 2η)

)(
1 − 1

2

√
1

m
(ξ + η) + O

( 1

m

))

= 3 + 1

2

√
1

m
(4ξ + 2η − 3ξ − 3η) + O

( 1

m

)

= 3 + 1

2

√
1

m
(ξ − η) + O

( 1

m

)
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Similarly,

θ̂2 = 2 + 1

2

√
1

m
(η − ξ) + O

( 1

m

)
So,

θ̂1 − θ̂2 = 1 +
√

1

m
(ξ − ζ ) + O

( 1

m

)

as required.

Why are randomized experiments different from stratified random samples?

Consider Example 1 from the sampling perspective. Each of the m pairs seems to be a stratum
of size two; we choose at random one of two numbers, +3 or −1. The usual comparison to a simple
random sample would involve drawing m times at random without replacement from a population
consisting of m tickets marked +3 and m tickets marked −1. That, however, is not a good model
for an experiment where m units are chosen at random for treatment, leaving the other m units for
controls. In the experiment, 2m responses are observed. The treatment group provides m responses,
about half being +4 and the others +2. Similarly, the control group provides m responses, about
half being +3 and the others +1. The usual comparison between stratified and unstratified sampling
designs is not directly relevant when comparing paired and unpaired experimental designs.

Nominal variances give the right answers in example 1

(A) Our sample comprises m observations, the ith one being 4(Xi − 1), where the Xi are
independent coin tosses. Plainly, the sample variance converges to 16/4 = 4, so ˆvar(θ̂) ≈ 4/m. A
similar argument works for (C1).

(B) The usual estimator ˆvar(θ̂) is v̂/m, where v̂ = v̂1+v̂2, with v̂1 being the sample variance of
the treatment units and v̂2 being the sample variance of the control units. We use previous notation.
The treatment sample comprises X responses that are +4 and m − X responses that are +2, where
X is hypergeometric. Now

v̂1 = (4 − 2)2
(X

m

)(m − X

m

)
→ 1

Likewise, v̂2 → 1. Thus, v̂ → 2. A similar argument works for (C2).‡
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‡ But see note 12 to chapter 27, ppA32–33 in FPP. Example 1 is special, because the (unob-
servable) correlation between responses across units equals 1.
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