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Let (Z;, X;, §;) be IID triplets fori = 1, ..., n; each random variable has a fourth moment,
E(5) = 0,and E(§?) = 02 > 0. We assume Z; 1L8;. Leta = E(X;Z;) > Oand b = E(X;$;).
To simplify the notation, take E(Z?) = 1. Let

Yi = BXi +4i
Here, a, b, B, o?are parameters. We wish to estimate . In this model, X; is endogeneous if b > 0.
On the other hand, we can instrument X; by Z;, because Z; 1L §; and a > 0.

The object here is to show that the IVLS estimator differs from g by a random error of order
1/4/n, with asymptotic bias of order 1/n. Based on a sample of size n, the IVLS estimator is

b= (D7) (X ziXi) = B+ (1)
i=1 i=1

where
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Let
tn = Nn/\/ﬁ 3)
By the central limit theorem, ¢, — N (O, 02): the Z;8; are IID with mean 0, and the variance is -2
because E(Z?8?) = E(Z?)E(8?) = 1. Next, E(Z;X;) = a. So D,, = na(1 + &), where
|
&= (@ ZiXi—1) )
i=1
is of order 1/./n by the central limit theorem. Thus
, NS
—B=n =Y 5
Bn — B =1 na 145, S)
and—the next being a little informal—
L 6

The step from (5) to (6) is “the delta-method,” i.e., a one-term Taylor expansion of 1/(1 4+ &,). A
more rigorous argument will be given, below. We conclude that 8, — B is asymptotically normal,
with mean 0 and an SE of 1/(a+/n). However, there is asymptotic bias of order 1/n, because
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For the third equality, expand the product of the two sums as a double sum

> (Zisya'ZiX; - 1)

ij
When i # j, factors are independent, and products have expectation zero because E(Z;6;) =
E(Z)E(S;) = 0. Similarly, £(Z;6;) = 0 when i = j. The only terms with (possibly) non-zero
expectation are a~! Z 12 X;d;.

We continue with previous assumptions and notation, but give a formal theorem and proof.

THEOREM. Bn — B = &y /(a/n) — A, /(an), where ¢, converges in distribution to N (0, o?),
and A, converges in distribution to a random variable with expectation k/a, where k = E(Z 12 X;8;)
may be positive, negative, or zero.

ProoF. Keep in mind that ¢, and \/n&, are asymptotically normal, with expectation 0: the
notation is therefore a little misleading. Start the argument from (5)above: 1/(1+x) = 1—1/(14x)
unless x = —1, so
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The pairs

Z,‘(S,‘, a_lZin- -1

are 1ID, with expectation 0 and covariance matrix

[ o? k/a
k= (k/a a"lE(Z}X}) — 1) .

The central limit theorem shows that (¢,,, /n&,) converges in distribution to bivariate normal, with
expectation 0 and covariance matrix K. In the denominator of (7), &, — 0, so A, has the same
limiting behavior as ¢,/n&,. QED



REMARKS

(1) If E(Z;X;) < 0, replace Z; by —Z; or a by |al; if E(Z;X;) # 0, then E(Zi2) > 0 and
E(X?) > 0.

(i1) The source of the bias in IVLS is randomness in &,,, coupled with the correlation between &,
and {,—that is, randomness in ) _ Z; X;, coupled with the correlation between ) | Z; X; and ) _ Z;§;.
When n is large, &, = 0—the law of large numbers—and the bias is negligible. The correlation

traces back to the endogeneity of X; ,Ai.e., the correlation between X; and é;. If, e.g., (X;, Z;) 1L §;,
it is straightforward to show that E(8,|X, Z) = B. Then k = 0 in (8).

(iii) Equations (1-2) and the strong law of large numbers show that ,BA,, — B almost surely.

(iv) What about estimating 2?2 In our setup,ife =Y — X ,én is the vector of residuals, then
ei —€ = X;(Bn— B)solle —€l?> =Y, X?(By — B)* and |le — €]|>/n — 0 almost surely.

(v) The usual presentation of IVLS conditions on Z. Then ;‘}IVLS — B = Z’f Ziéi/ er Z; X;;
conditionally, the numerator is essentially normal with mean 0 and variance | Zl.2 =nkE (Zl.z).
The denominator is essentially Z’l’ Z;E(Xi|Z;)) = nE|Z;E(X;|Z;)] = nE(Z;X;) = na. With
some more effort, the theorem can be extended to describe the limiting conditional behavior of
(&n, A/NCy), given Zy, ..., Z,. In a little more detail, let ¢(Z;) = aYZ;E(X;|Zi) — 1, so
E(J/n&nZy, ..., Zy) =n" V231 ¢(Z;). The p(Z;) arelID,and E(¢(Z;)) = a 'E(Z; X;)—1 =
0 by the definition of a. Moreover, 0 < Var(¢(Z,~)) < oo. If the variance is positive, the central
limit theorem applies and E(y/n¢,|Z1, ..., Z,) converges in distribution. In any event, we can
center, considering the conditional joint distribution of

given Zy, ..., Z,. Apparently, this conditional distribution converges weak-star, along almost all
sample sequences of Z1, Z,, . ... For example, &, is n~1/2 Z’f Z;35;, where the §; are IID with mean
0, and—conditionally—the Z; are (almost surely) a well-behaved sequence of constants:
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As in many other such situations, when 7 is large, there would seem to be little difference between
conditional and unconditional inference.

(vi) Suppose (Z;, §;, €;) are independent, with expectation 0, variance 1, and fourth moments.
Wecanset X; = aZ; +bd; +ce;. Thencov(Z;, X;) = a, because E(Zl.z) = l;and cov(X;, §;) = b,
because E(8l.2) = 1. The k in the theorem is k = E(Zi2X,~ 8;) = b, because

Z2X:8; = aZ}s; + bZ38? + cZ%¢;,

while E(Z38;) = E(Z})E(8;) =0, E(Z}8?) = E(Z)E(8?) = 1, E(Z}¢;) = E(Z?)E(e;) = 0.
(vi1) With, say, two instruments and one endogenous variable, the proof of consistency and

asymptotic normality is about the same. However, evaluating the small-sample bias is trickier. For
instance, expansions like (6) can be done in the matrix domain.



