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Let (Zi,Xi, δi) be IID triplets for i = 1, . . . , n; each random variable has a fourth moment,
E(δi) = 0, and E(δ2

i ) = σ 2 > 0. We assume Zi
�
δi . Let a = E(XiZi) > 0 and b = E(Xiδi).

To simplify the notation, take E(Z2
i ) = 1. Let

Yi = βXi + δi

Here, a, b, β, σ 2 are parameters. We wish to estimate β. In this model,Xi is endogeneous if b > 0.
On the other hand, we can instrument Xi by Zi , because Zi

�
δi and a > 0.

The object here is to show that the IVLS estimator differs from β by a random error of order
1/

√
n, with asymptotic bias of order 1/n. Based on a sample of size n, the IVLS estimator is

β̂n = ( n∑
i=1

ZiYi
)/( n∑

i=1

ZiXi
) = β + ηn (1)

where

ηn = Nn/Dn, Nn =
n∑
i=1

Ziδi, Dn =
n∑
i=1

ZiXi (2)

Let
ζn = Nn/

√
n (3)

By the central limit theorem, ζn → N(0, σ 2): the Ziδi are IID with mean 0, and the variance is σ 2

because E(Z2
i δ

2
i ) = E(Z2

i )E(δ
2
i ) = 1. Next, E(ZiXi) = a. So Dn = na(1 + ξn), where

ξn = 1

n

n∑
i=1

(a−1ZiXi − 1) (4)

is of order 1/
√
n by the central limit theorem. Thus

β̂n − β = ηn =
√
n

na

ζn

1 + ξn
(5)

and—the next being a little informal—

ηn
.= ζn − ζnξn

a
√
n

(6)

The step from (5) to (6) is “the delta-method,” i.e., a one-term Taylor expansion of 1/(1 + ξn). A
more rigorous argument will be given, below. We conclude that β̂n − β is asymptotically normal,
with mean 0 and an SE of 1/(a

√
n). However, there is asymptotic bias of order 1/n, because
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a−1n−1/2E
{
ζnξn

} = a−1n−1/2E
{ 1√

n

n∑
i=1

(
Ziδi

) 1

n

n∑
i=1

(
a−1ZiXi − 1

)}

= a−1n−2E
{ n∑
i=1

(
Ziδi

) n∑
i=1

(
a−1ZiXi − 1

)}

= a−2n−2E
{ n∑
i=1

Z2
i Xiδi

}

= a−2n−1E{Z2
i Xiδi}

For the third equality, expand the product of the two sums as a double sum
∑
ij

(Ziδi)(a
−1ZjXj − 1)

When i 	= j , factors are independent, and products have expectation zero because E(Ziδi) =
E(Zi)E(δi) = 0. Similarly, E(Ziδi) = 0 when i = j . The only terms with (possibly) non-zero
expectation are a−1Z2

i Xiδi .

We continue with previous assumptions and notation, but give a formal theorem and proof.

Theorem. β̂n − β = ζn/(a
√
n)−�n/(an), where ζn converges in distribution to N(0, σ 2),

and�n converges in distribution to a random variable with expectation k/a, where k = E(Z2
i Xiδi)

may be positive, negative, or zero.

Proof. Keep in mind that ζn and
√
nξn are asymptotically normal, with expectation 0: the

notation is therefore a little misleading. Start the argument from (5) above: 1/(1+x) = 1−1/(1+x)
unless x = −1, so

a
√
n(β̂n − β) = ζn

1 + ξn
= ζn − ζnξn

1 + ξn
= ζn − �n√

n

where

�n = ζn
√
nξn

1 + ξn
(7)

The pairs
Ziδi, a

−1ZiXi − 1

are IID, with expectation 0 and covariance matrix

K =
(
σ 2 k/a

k/a a−2E(Z2
i X

2
i )− 1

)
(8)

The central limit theorem shows that (ζn,
√
nξn) converges in distribution to bivariate normal, with

expectation 0 and covariance matrix K . In the denominator of (7), ξn → 0, so �n has the same
limiting behavior as ζn

√
nξn. QED
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Remarks

(i) If E(ZiXi) < 0, replace Zi by −Zi or a by |a|; if E(ZiXi) 	= 0, then E(Z2
i ) > 0 and

E(X2
i ) > 0.

(ii) The source of the bias in IVLS is randomness in ξn, coupled with the correlation between ξn
and ζn—that is, randomness in

∑
ZiXi , coupled with the correlation between

∑
ZiXi and

∑
Ziδi .

When n is large, ξn
.= 0—the law of large numbers—and the bias is negligible. The correlation

traces back to the endogeneity of Xi , i.e., the correlation between Xi and δi . If, e.g., (Xi, Zi)
�
δi ,

it is straightforward to show that E(β̂n|X,Z) = β. Then k = 0 in (8).

(iii) Equations (1–2) and the strong law of large numbers show that β̂n → β almost surely.

(iv) What about estimating σ 2? In our setup, if e = Y − Xβ̂n is the vector of residuals, then
ei − εi = Xi(β̂n − β) so ‖e − ε‖2 = ∑

i X
2
i (β̂n − β)2 and ‖e − ε‖2/n → 0 almost surely.

(v) The usual presentation of IVLS conditions on Z. Then β̂IVLS − β = ∑n
1 Ziδi/

∑n
1 ZiXi ;

conditionally, the numerator is essentially normal with mean 0 and variance
∑n

1 Z
2
i

.= nE(Z2
i ).

The denominator is essentially
∑n

1 ZiE(Xi |Zi) .= nE[ZiE(Xi |Zi)] = nE(ZiXi) = na. With
some more effort, the theorem can be extended to describe the limiting conditional behavior of
(ξn,

√
nζn), given Z1, . . . , Zn. In a little more detail, let φ(Zi) = a−1ZiE(Xi |Zi) − 1, so

E(
√
nζn|Z1, . . . , Zn) = n−1/2 ∑n

1 φ(Zi). Theφ(Zi) are IID, andE
(
φ(Zi)

) = a−1E(ZiXi)−1 =
0 by the definition of a. Moreover, 0 ≤ var

(
φ(Zi)

)
< ∞. If the variance is positive, the central

limit theorem applies and E(
√
nζn|Z1, . . . , Zn) converges in distribution. In any event, we can

center, considering the conditional joint distribution of

ξn,
√
n
(
ζn − E(ζn|Z1, . . . , Zn)

)

given Z1, . . . , Zn. Apparently, this conditional distribution converges weak-star, along almost all
sample sequences ofZ1, Z2, . . . . For example, ξn is n−1/2 ∑n

1 Ziδi , where the δi are IID with mean
0, and—conditionally—the Zi are (almost surely) a well-behaved sequence of constants:

1

n

n∑
i=1

Z2
i → 1,

1

n

∑
i

{Z2
i : 1 ≤ i ≤ n & |Zi | > L} → 0 as n → ∞ and then L → ∞

As in many other such situations, when n is large, there would seem to be little difference between
conditional and unconditional inference.

(vi) Suppose (Zi, δi, εi) are independent, with expectation 0, variance 1, and fourth moments.
We can setXi = aZi+bδi+cεi . Then cov(Zi,Xi) = a, becauseE(Z2

i ) = 1; and cov(Xi, δi) = b,
because E(δ2

i ) = 1. The k in the theorem is k = E(Z2
i Xiδi) = b, because

Z2
i Xiδi = aZ3

i δi + bZ2
i δ

2
i + cZ2

i εi ,

while E(Z3
i δi) = E(Z3

i )E(δi) = 0, E(Z2
i δ

2
i ) = E(Z2

i )E(δ
2
i ) = 1, E(Z2

i εi) = E(Z2
i )E(εi) = 0.

(vii) With, say, two instruments and one endogenous variable, the proof of consistency and
asymptotic normality is about the same. However, evaluating the small-sample bias is trickier. For
instance, expansions like (6) can be done in the matrix domain.
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