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Abstract

A sample covering 204,394 blocks from the 1990 U.S. Census per-
mits measurement of residual heterogeneity from local areato local area
after controlling by dtratification for demographic characteristics such
as race, ethnicity, age, sex as well as geographic characteristics such as
region and place-type. The local areas have populations on the order of
10,000 people. The variables studied are four indices of enumeration
difficulty. The results show that variance due to heterogeneity from area
to area is comparable to (if not larger than) variance from stratum to
stratum and can be expected to dominate sampling variance—especially
with samples as large as the ones used in the U.S. Census Bureau's
Post-Enumeration Surveys. These findings constrain the viable estima-
tion strategies that could be employed for local talliesin the U.S. 2000
Census.
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1. Introduction

In the United States, census counts are used to apportion congres-
siona seats to states, and to draw the boundaries of electoral districts
within states (“redistricting”). The counts also enter the formulas for
alocating tax funds to states, counties, cities, and smaller jurisdictions.
Thus, the census has some effect on the distribution of power and money
[Skerry 2000]. Controversy over proposed statistical adjustments of pop-
ulation counts from decennial censuses has stimulated an extended pro-
gram of demographic research over twenty years [see Section 4]. These
issues have been brought again to the fore by the current Director of the
U.S. Census Bureau, Kenneth Prewitt.
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In considering whether to certify adjusted or unadjusted counts as
the official census counts, Prewitt directs attention to the problem of
geographical heterogeneity in quality of coverage, which limitsthe accu-
racy of small-area estimates; he acknowledges the renewed importance
of datafrom 1990, recognizing that decisions will be made before much
of the data from the 2000 Census evaluation process will become avail-
able: he favors certifying the adjusted counts, barring some unforeseen
developments when the data are collected and analyzed [Prewitt 2000].
Because the U.S. Supreme Court ruled that federal law mandates the use
of unadjusted population counts for apportionment, the impact of certi-
fication will be on the use of census data for redistricting within states,
and the allocation of tax funds to state and substate jurisdictions [Brown
et al. 1999].

A large data set for studying geographical heterogeneity in quality
of coveragefor substate areas as well asfor states was assembled around
1990 by the U.S. CensusBureau inits P-12 Eval uation Project. However,
most analysis was directed toward state-by-state heterogeneity. In this
paper, we analyze the scale of substate heterogeneity as revealed by the
P-12 data, to provide scientific background for the political decisions at
stake in the Prewitt report.

Theissue of heterogeneity should beviewed inthe broader statistical
context of small-area estimation. Classical statistical sampling theory is
about inferences upward from the part to the whole, from sample to
population. Accuracy is limited by the size of the sample, essentially
through the square root of the sample size. In small-area estimation, the
situation is different. Theaim isto makeinferences sidewaysfrom afew
parts to al other parts. The plan for the U.S. Census in 2000 calls for
extrapol ating sidewaysfrom asampleof 12,000 block clustersto separate
estimates of census undercount for tens of thousands of local areas and
each of 5 million inhabited Census blocks. Accuracy islimited not only
by sample size but also fundamentally by the amount of heterogeneity
from local areato local area. The square root law ceases to apply—even
if al data-processing can be done without error.

It is standard practice to apply uniform ratio estimators and other
small-area techniques only after stratifying on available variables like
age, sex, and race [Ghosh and Rao 1994]. Through stratification some
heterogeneity is removed, leaving residual heterogeneity which at some
point still imposes diminishing returns on the gains in accuracy achiev-
ablefrom larger sample size. Before 1990, little was known about levels
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of residual heterogeneity and the pace of diminishing returns to sam-
ple size. Since then, interest in census adjustment has led to a series of
studiesin the United States [see Section 4], principally focussed on state-
to-state heterogeneity in various indices of enumeration difficulty. The
U.S. Census Bureau created, in its P-12 Evaluation Project, a unique
data set suitable for studying local as well as state-level heterogene-
ity. The present study exploits P-12 to derive the first—albeit some-
what tentative—measurements of residual heterogeneity for local areas
containing on the order of 10,000 people each.

The measurements of heterogeneity in this study provide a bench-
mark for assessing small-area undercount estimation in the census. The
issues are summarized in [Prewitt 2000], with extensive references. For
other perspectives, see [Brown et a. 1999]; also see [Freedman, Stark
and Wachter 2000] who introduce a probability model for census ad-
justment, helping to distinguish geographical heterogeneity from other
components of error.

As well as playing arole in discussions of Census adjustment, the
measurements in the present study also bear on the likely accuracy of
small-area estimation in many other applications. They follow, in an
American context, on the new scientific interest in structural properties
of geographical heterogeneity kindled by [Le Bras 1993].

Several questions are frequently asked about research in this area.
(i) Why study indices of enumeration difficulty rather than undercounts
themselves? (ii) Can residual heterogeneity not be eliminated by finer
stratification? (iii) What about other datasets?

(i) The Census does not measure its own undercount. Surveys that
do measure undercounts, large as they are, are much too small to
measure heterogeneity at any fine geographical scale. Problems
with data quality in the 1990 Post-Enumeration Survey (PES) also
restrict its usefulness for appraising heterogeneity. Data from the
2000 PES, renamed “Accuracy and Coverage Evaluation” (ACE),
will not be available for some time, and research projects to assess
the data quality in ACE have uncertain compl etion dates.

(ii) Possibilities for finer stratification are limited. For Census Bureau
purposes, only variablesrecorded for all respondentson Censusshort
forms are usable for stratification. Moreover, thereislittle evidence
to show that doubling or tripling the number of post-strata would
achieve any marked reduction in heterogeneity; we return to this
point, below [see Section 2.3].
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(iii) Other publicly available datasetsknownto uslack oneor another key
feature of P-12. The U.S. Public Use Microdata Samples (PUMS)
only identify geographical location down to “ Public Use Microdata
Areas’ (PUMAS) with more than 100,000 people each. The Cen-
sus Bureau’s Summary Tabulation Files have precise geography but
little cross-classification by stratifying variables. The other large
U.S. surveys, like the Current Population Survey, are much smaller
than P-12. Similar limitations of one kind or another apply to data
setscollectedin other devel oped countries. Thedatafor French com-
munes achieve geographical resolution an order of magnitude finer
than P-12, but lack stratification variables[Le Bras 1993].

Every silver lining has its cloud, and P-12 is no exception. The
P-12 data were aggregated by the Bureau in a data-dependent way into
“superblocks,” in order to protect the confidentiality of the respondents.
Superblocks range in size from a city block in Manhattan to some large
swath of rural Wyoming. The datawe have are based on superblocks: our
summary statistics show the heterogeneity in these units, thereby averag-
ing across afull spectrum of more familiar geography. The data suggest,
however, that a typical superblock represents a locality whose order of
sizeis 10,000 inhabitants, and our results are best interpreted on that ge-
ographic scale. More formal arguments are postponed to the Appendix.

2. Heterogeneity
2.1. The Measure H

This section presents our measure of heterogeneity, and procedures
for estimating it from the data. Throughout this discussion we restrict
attention to a single variable (e.g., the proportion of persons living in
multi-unit housing) and to a single demographic group, for example,
Hispanic women aged 20-29. Our object of study is variability from
local areato local areawithin broader areas. We need some terminol ogy
and notation to clarify the distinctions.

Territory isour name for one of the broader areas, and each territory
spans many local areas. The territories are determined by the design of
the underlying estimation project and data-collection effort. In small-
area estimation with uniform ratio estimators, all small areas within one
territory are assigned a common “uniform” estimated value, based on
aggregating across the territory; in census applications, estimates are
uniform within combinations of territory and demography called “post-
strata” Typicaly, a territory consists of all places of a particular type
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across some regional subdivision of the country. In P-12, the central
citiesin New England are an example of aterritory.

Each territory is dissected into localities: examples might be the
Back Bay, North End, or Beacon Hill in Boston; or Colorado’s Snow-
mass Mountain Basin, Sangre de Cristos foothills, etc. The estimation
projectitself may go down to smaller unitsthan theselocal areas—Census
undercount estimation goesall the way down to blocks—but we are mea-
suring heterogeneity only down to the scale allowed by P-12. For any
particular variable of interest, each local area has a value that differs
from the territory-wide value, the latter being an average of the former.
The deviations from average are what we call heterogeneity, and it is
heterogeneity that we are going to measure.

In our notation, within a given territory, for a given variable and
demographic group:

pi isthetrueratefor all n; group membersintheith of L localities;

p =Y, pi/L isthearithmetic mean of the true local rates.

Thequantity whosemeasurement isthegoal of thestudy isthe population-
level “variance due to heterogeneity,” the variance of the true local rates
about their mean:

1
H*= 23 (pi—p)* @

This quantity is important because it appears in formulas for esti-
mation error. Let p be an estimator of p. The mean squared error of
estimation that results from using p as the estimate of p; for all local
areas as if they shared acommon valueis

1
22 = PP =H 4 (p - ) )

The first term on the right, H2, represents errors due to heterogeneity
resulting directly from attributing one common rate to local areas whose
trueratesvary. Thesecondterm representserrorsdueto biasand sampling
variability in the territory-wide estimator 5. The H2-term only vanishes
if thelocal areas are in fact homogeneous, so that al p; equal each other
and henceequal p. Otherwise, H? isacontribution to error which cannot
be reduced by increasing sample size.

Some fine points require mention. To begin with, H? is centered on
p, inorder to make straightforward the interpretation as avariance due to
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heterogeneity. Similarly, p isthe unweighted mean of the p;. The P-12
data were aggregated by a procedure that tends to equalize the counts
of stratum membersin local areas, so thereis little numerical difference
between weighted and unweighted means. Conceptually, however, the
weighted mean is the natural target of aratio estimator obtained from a
numerator and denominator separately aggregated over i. If pissuchan
estimator, then the term (p — 5)2 in (2) includes the squared difference
between weighted and unweighted means, aswell as a contribution from
sampling error and from “ratio estimator bias,” whose underlying source
isagain heterogeneity among the p;. Ratio estimator bias enters through
p — p, decreases with sample size, and is a minor part of the story
compared to H2 [Freedman, Stark and Wachter 2000].

We now discuss estimation of H?2 from the P-12 sample. Temporar-
ily, we have fixed a territory and a variable, and are considering only
personsin one demographic group. In our setup, the ith superblock rep-
resents the ith locality, so the number of superblocks coincides with the
number of localities. Let

p; betherate for the N; sample personsin the ith superblock;
p =) ; pi/L bethemean of these rates.

A naive estimator of H2 would be
1 R R
=D i = P )
i

However, this estimator of variance due to heterogeneity is inflated by
variance due to sampling. We therefore define H by the equation

2 1 A 1 1 pi(L— pi)
DDLUl Gl DO v s

The second term is an approximate correction for sampling variability in
p; and p [see Appendix].

2.2. Variables and Strata
Four variables are examined in our study:

(i) Themulti-unit housing rateisthe proportion of personsresiding
in multi-unit structures.

(ii) The non-mailback rate is the proportion of people who did not
mail back their Census form, out of al people in the Census
who were meant to mail it back.
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(iii) Theallocation rateisthe proportion of personswith at least one
of six key characteristics imputed. The six characteristics are
relationship to householder, age, sex, race, Hispanic origin, and
marital status.

(iv) The substitution rate isthe proportion of persons whose whole
record was imputed or “substituted” into the Census, typically
in householdsfrom which no detail ed information was obtained.

These variables provide agood variety of caseswith which to exam-
inelocal heterogeneity. They include one structural variable, one behav-
ioral variable, and two measures of data completeness, all taking values
between zero and one. They arefour of the five main variablestreated in
the Census Bureau’'s P-12 Project Report [Kim 1991]: thefifth variable,
the mail universe rate, is more narrowly administrative in character, and
is not considered here.

Documentation of the P-12 data set is to be found in [Thomp-
son 1990, U.S. Bureau of the Census 1990, Bateman 1991, Kim 1991].
The sample is a stratified cluster sample selected using essentially the
same design as the Census Bureau's 1990 Post-Enumeration Survey
(PES) but with 116,619 block clustersin place of 5293. These clusters
include 204,394 blocks compared to 12,964 blocks for the PES.

The dtratification is the one proposed for adjusting the 1990 Cen-
sus. The population is divided into 116 PSGs (“ Post-Stratum Groups”)
defined in part by geography and in part by demography. The geograph-
ical classification is based on census division (9 areas) and place-type
(7 types). The demographic breakdown is by race-ethnicity (4 cate-
gories), and renter-owner status (2 groups). In principle, there could be
9x 7 x 4 x 2 =504 PSGs, but smaller ones are collapsed and the largest
urban areas are treated differently. Intotal, thereare 116 PSGs:. alist can
be found in Table A.1 of [Hogan 1993]. We exclude the PSG for Indians
living on reservations, and deal with the remaining 115; we also exclude
the so-called “residual population” not surveyed by the PES. Each PSG
is broken down by 6 age groups and 2 sexesinto 12 “post-strata,” so we
have 115 x 12 = 1380 post-strata to consider.

Each post-stratum is defined in part by demography (race-ethnicity,
renter-owner, age, sex) and in part by geography (census division, place-
type). Three examples give the flavor of the post-strata:

(i) Non-minority females age 0-9 living in a central city in New
England.
(if) Black malesage 10-19 livinginrental unitsinacentral city ina
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large metropolitan area in the South Atlantic division (Florida,
Georgia, and so forth).

(iii) Black and hispanic females age 60 and over in New England,
living either in acentral city or in ametropolitan areabut not in
its central city.

Thegeography isthe“territory” associated with the post-stratum, and
the demography can be considered as providing the stratification within
which small-areaestimation takes place. In post-stratum (i), for instance,
theterritory iscentral citiesin New England; small-areaestimation would
be uniform within the part of thisterritory inhabited by the demographic
group consisting of non-minority femal esage 0-9. With post-stratum (i),
the territory consists of central cities in large metropolitan areas in the
South Atlantic division, and the demographic group consists of black
males age 10-19 living in rental units. Thus, the boundaries of the ter-
ritories depend on the post-stratum, and so will the dissection of each
territory into local areas. For groupswhose members are numerous, high
resolution is possible and the local areas are small. For groups whose
members are few and far between, the local areas are extended.

Asnoted above, the specification of territories, and localitieswithina
territory, is data-dependent. More specifically, the recordsin P-12 corre-
spond to unique—and non-overlapping—intersections of post-strata and
superblocks. These records were built up from more basic information
for each post-stratum and sample block. The algorithm used to build up
the records required that for any given post-stratum, a P-12 record must
have at least ten post-stratum members; the corresponding geography
must span whole Census block clusters and must not cross state lines.
(These three constraints could not always be satisfied, and we eliminated
some 2000 exceptional records.) Given a post-stratum, a “superblock”
is the collection of block clusters put together during the construction
of arecord; there is one superblock per record. There is one locality
per superblock, consisting of al the block clustersin the population cor-
responding to the one block cluster in the sample. Due to the sample
design, thisinformal idea can be made fairly precise [see Appendix].

The total U.S. population is around 250 million. Our P-12 dataset
has about 12,000,000 people, and we think of it as a 1-in-20 sample;
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in reality, the sampling fraction varies from one part of the country to
another. There were 750,000 records, so the average humber of sample
persons in a record is 12,000,000/750,000 = 16: given a typical post-
stratum and superblock, about 16 members of the post-stratum will be
found in the superblock. This corresponds to roughly 300 post-stratum
members per locality, since each sample person represents some 20 peo-
ple. The algorithm used to construct the P-12 records tends to equalize
the local-area counts.

There are 115 PSGs; these do not overlap, and their average size
is around 250 million/115 = 2.2 million people. Each PSG is defined
by a combination of geography—the “territory”—and demography. The
territories will have a population that is several times larger than the
PSG: 5-10 million people is arepresentative range, so there must be sev-
eral hundred localities per territory. We estimate an average of 6 blocks
per superblock, hence, 120 blocks per locality, with 6,000 persons in
all demographic groups combined—although this is only an order-of-
maghitude cal culation. We have done the P-12 aggregation ourselves on
the “Berkeley subset” of census data [see Appendix], and those simula-
tions suggest a population of 10,000 per locality. In the end, we think
most localities will have populations in the range 2,500-25,000.

The geometry is confusing at first. The superblocks and localities
associated with any particular post-stratum do not overlap. Aswe move
from one post-stratum to another within the same PSG, the territory re-
mains the same—but due to the aggregation procedure, the superblocks
change and new superblocks overlap the old. (Similar statements apply
to the localities) Aswe move from one PSG to another, the territories
change and overlap: compare post-strata (i) and (iii) above.

Although details are complicated, the basic picture is straightfor-
ward. There are two scales which govern any measurement of hetero-
geneity. Variability occurswithin some big unit, across some small units.
Here the big unit is a territory encompassing something like 7 million
people. The small units are local areas encompassing some 10,000 peo-
ple, with about 300 people in each of 30 demographic groups. On these
scales, P-12 allows estimates of residual heterogeneity after stratification
by demographic group. The measurement of heterogeneity within post-
strata across the superblocks of P-12 isrelatively unambiguous; tying the
results to more familiar geographical units must be more tentative, due
to the complexities of the P-12 data structure.
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2.3. Results

Estimates of residual heterogeneity from P-12 are shown in Table 1,
along with related values for comparison. The four columns correspond
tothefour outcomevariablesin our study. Thevaluesshownfor A andfor
sampling standard error are root-mean-square (RMS) values calculated
over all post-strata. We report H rather than H2 to make units and scale
more easily understandable.

The first row of Table 1 shows Asfor local areasin P-12. The first
entry is 22.3%, signifying that within post-strata, the local area-to-area
differences in the rates of multi-unit housing are on the order of 22.3%.
In other words, ascribing the overall rate of multi-unit housing to the
local areas within a territory incurs an RMS error due to heterogeneity
of 22.3%, even after controlling for the geographic and demographic
variables in the post-stratification. This outcome reveals a remarkable
degree of diversity in the clustering of apartment buildings and multiple-
family houses. The other entries range from 10.7% for the non-mailback
rate down to 2.3% for the Census substitution rate. The calculation of
the standard errorsisdescribed bel ow [see Appendix]; these are plausible
upper bounds.

Table 1: Measures of Heterogeneity and Comparative Values

Multi-unit Non- Alloca-  Substi-
housing  mailback  tions  tutions

Measures of Heterogeneity

H for local areas 22.3% 10.7% 7.1% 2.3%
Standard error 0.7% 0.3% 0.2% 0.2%
H for states 10.4% 4.3% 29%  0.6%

Values for Comparison

Standard deviation of

D across post-strata 23.7% 12.0% 80% 0.7%
Mean of p across post-strata 28.6% 29.7% 197% 1.1%
Sampling standard errors of p

Low estimate 2.6% 3.0% 27% 0.7%
High estimate 6.1% 4.2% 34% 1.0%
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If people belonging to the same post-stratum shared the same rates,
wherever they resided, the values of H2 would all be estimates of zero.
Though H? is estimating a non-negative quantity, its sample values are
not constrained to be non-negative. None of the 1380 post-strata have
negative estimates for multi-unit housing or non-mailbacks; five do for
allocations and 50 for substitutions. The small standard errors and the
rarity of negatives both indicate the strong statistical significance of the
observed heterogeneity, thanks to the large sample size of P-12.

Our formulafor A can be applied to measure state-to-state hetero-
geneity by letting i in the definition range over the 50 states plus the
Digtrict of Columbia. The third row of Table 1 shows the state-level
RMS values of A across the 1224 post-strata that intersect more than
one state. We see that A for multi-unit housi ng only fallsto alittle less
than half its local-level value at this much larger level of aggregation.
For substitutions, H isstill one-fourth of itslocal level. Heterogeneity is
not simply produced by small-scale flutters in concentrations: if it were,
heterogeneity would average out at larger scales like states. The values
for statesin Table 1 are generally only abit smaller than the comparable
values for states in Table 5 of [Freedman and Wachter 1994], where a
coarser 357-fold post-stratification is used; the value for multi-unit hous-
ing is actually bigger. This suggests that the measures of heterogeneity
are somewhat robust to moderate changes in the post-stratification. Put
another way, refining the stratification may not yield much reduction in
heterogeneity.

The practical significance of the levels of heterogeneity indicated
by the first row of Table 1 may be judged by various standards of com-
parison. One natural comparison is with the standard deviation of the
post-stratum mean rates p across post-strata, shown in the fourth row of
Table 1. This standard deviation suggests itself when one thinks of the
values for, say, the multi-unit housing rate as entries in a two-way table
whose rows are superblocks and whose columns are post-strata. The in-
dex H then measures the residual variability after controlling for column
effects, and the standard deviation over post-strata measures the variabil -
ity “explained” by the column effects. Table 1 shows that the residual
variability is roughly as large as the explained variability. That is true
for the first three variables. For the fourth, substitutions, the residual
variability is three times as large. For comparable data at the state level
and an algebraic treatment that dispelsthe air of paradox, see [Freedman
and Wachter 1994].
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The levels of H may aso be judged by comparison with the sam-
pling standard errors for the post-stratum mean rates p. The last two
rows of Table 1 show alow and a high estimate of sampling standard
error based on asample of the size of the PES, the post-enumeration sur-
vey for 1990. The derivation of our two illustrative estimates of standard
error isexplained below [seeAppendix]. Itturnsout that thelocal hetero-
geneity measured by A is much larger than the sampling standard error
with samples of this size. Even at the state level, heterogeneity is com-
parable to the sampling standard errors for p. Obviously, heterogeneity
cannot be taken to be negligible in comparison with sampling variability
in any settings like the ones considered here. The numbers in Table 1
are based on averaging post-strata; however, examination of scatterplots
(not presented here) indicates that the conclusions hold for practically all
individual post-strata.

For variableslike ours, taking val ues between zero and one, the mean
of the variable imposes a constraint on the variance due to heterogeneity.
Hence we expect the levels of A to be strongly influenced by the post-
stratum means p. For instance, only 1.1% of person-records on average
are Census substitutions while 28.6% correspond to people in multi-unit
housing; the corresponding H's are 2.3% and 22.3%. Post-stratum by
post-stratum plots of A2 versus p, not given here, show H tendsto vary
likeafractionof \/p(1 — p). Wecall theratio H/,/p(1 — p) the“max-
fraction.” Its median value across the 1380 post-stratais roughly 1/2 for
multi-unit housing, 1/4 for the non-mailback rate, 1/6 for the allocation
rate, and 1/5 for the substitution rate.

The “max-fraction” is given its name for the following reason. The
maxi mumamount of heterogeneity in (say) multi-unit housingisachieved
by an all-or-nothing arrangement where aproportion p of thelocal areas
have nothing but apartments and the remaining 1 — p of the local areas
have nothing but single-family houses. Under this arrangement, H takes
on the maximum value consistent with an overall mean of p, namely
+p(L— p). Under any less heterogeneous arrangement, H takes on
some fraction of its maximum. The max-fraction, a sample-based es-
timate of the population-level quantity, is a measure of heterogeneity
standardized for the level of p. Since mean max-fractions are sensitive
to ahandful of outliers, medians may be more descriptive. For multi-unit
housing, A is over half the maximum possible level. By this standard-
ized measure, the alocation rate shows the least heterogeneity and the
multi-unit housing rate the most.
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Table 2 presents estimated H's for various groups of strata; only
two age-ranges are shown. The differences are modest: for instance,
valuesfor males and females are very close. The higher Hsare generaly
associated with higher mean ps. The post-strata which mix renters and
owners together do not show more heterogeneity than the post-strata
which separate out renters. the latter strata have the higher mean ps.

Table 2: Loca-Level H for Groups of Strata
Root Mean Square Values across Post-Strata

Multi-unit Non- Alloca=  Substi-
housing mailback tions  tutions

Male strata 22.0% 11.0% 7.3% 2.3%
Female strata 22.6% 10.4% 6.9% 2.3%
Ages 0 through 9 23.2% 13.2% 8.5% 2.6%
Ages 20 through 29 25.4% 11.5% 6.9% 2.4%
Owner strata 17.3% 8.7% 6.6% 2.0%
Mixed strata 22.2% 11.0% 6.9% 2.2%
Renter strata 26.6% 11.2% 8.3% 3.0%

Breakdownsby groups, likethosein Table 2, show that heterogeneity
is pervasive. Heterogeneity is not concentrated among post-strata of
any particular type. Strata which mix groups like owners and renters
produce similar levels of heterogeneity as strata which separate them.
That outcome is further evidence that dependence on the details of post-
stratification is not severe. By contrast, heterogeneity would be expected
to vary with the geographical resolution. Table 3 shows Hsfrom studies
with different level s of resolution; the variable used isthe allocation rate.

Table 3 has results for “Public Use Microdata Areas’ (PUMAS),
which are aggregations of cities and counties into areas each of which
containsat least 100,000 people. Theresultsaredueto Marcey-Jo Rhyne
and are quoted by permission. Her post-stratification for the PUMAsfol-
lows the one used in the 1990 PES, to the extent feasible: no distinctions
of place-type can be made; renters are distinguished from ownersin all
cases, as are blacks, non-black hispanics, Asian and Pacific Islanders,
and whites and others. She looked only at alocations. It is interesting
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that the heterogeneity acrossthe relatively large PUMA unitswithin one
stateis nearly as high as the heterogeneity across the much smaller local
areas within larger territorial groupings.

Table 3: Dependence of A on Geographical Level for Allocations

Geography Data set Post-strata  H

States within U.S. P-12 1392 2.9%
States within U.S. 1990 Census 357 3.9%
PUMASs within Oregon 1990 PUMS 120 6.6%
Localities within territories P-12 1392 7.1%

Sources: Tablelinthepresent study for lines1and4; [Freed-
man and Wachter 1994] for line 2; [Rhyne 1999] for line 3.

3. Applications to Census Undercount Estimation

The results of Section 2 provide guidance about the likely size of
errorsdueto heterogeneity inthe Census Bureau’ ssmall-area estimates of
undercountsfrom the 1990 PES. They provide such guidanceto the extent
that the P-12 variabl es provide meani ngful anal oguesto undercountswith
respect to place-to-place variability, and to the extent that P-12 resembles
the PESin sampledesign and post-stratification. The P-12 variableswere
chosen specifically to provide such analogues. Like undercounts, they
are Census coverage indicators, and the Census Bureau goes so far as
to call them “proxies’ or “surrogates’ for undercount. The P-12 sample
design was chosen to be essentialy the same as that for the PES, and
the post-stratifications are identical. These considerationsall support the
idea of taking P-12 as a guide to the effects of heterogeneity on 1990
undercount estimates.

On the other hand, there is no direct validation of the posited simi-
larity between P-12 variables and undercounts. The main available com-
parisons are in terms of overall levels and indices of dispersion. These
arepresented in thissection. It turnsout that undercountsfall well within
therange of aternatives spanned by thefour P-12 variables, but no single
P-12 variable is a close match in both level and dispersion.
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Net undercounts can be negative (when thereisan overcount) but the
P-12 variables are aways non-negative. Thisis an important difference
which weakens the analogy. The net undercount is approximately equal
to the difference between two non-negative variables, the rates of “gross
omissions’ (e.g., missed persons) and “erroneous enumerations’ (e.g.,
duplicates or fabrications). The P-12 variables may be better analogues
for these two components of undercount than for their difference, but the
overall pictureiscomplicated by the correl ationsbetween grossomissions
and erroneous enumerations which extend within post-strata all the way
down to Census blocks.

Information on levels and indices of dispersion for undercount vari-
ablesareshowninTable4. They areto be compared to the corresponding
rows for P-12 variables in Table 1. In Table 4, following common Bu-
reau practice, centered adjustment factorsare usedin place of undercount
rates. The centered adjustment factor for any unit is calculated by taking
the estimated true count, dividing by the Census count, and subtracting
one. The centered adjustment factor is close to the undercount rate it-
self. The first column in Table 4 pertains to the Bureau's “smoothed”
adjustment factors, the factors actually used for the Bureau's calculation
of adjusted counts. The second column pertains to the “raw” adjust-
ment factors. These are dual-system estimates from PES data, cal culated
post-stratum by post-stratum. The raw factors were transformed into the
smoothed factors by an empirical Bayes smoothing algorithm [Freedman
et al. 1993]. Thefinal two columns pertain to the gross omission and er-
roneous enumeration rates. Neither Table 4 nor Table 1 is weighted for
post-stratum size.

Table 4: Comparative Values for PES Adjustment Factors

Smoothed Raw Gross Erroneous
Factors Factors Omissions Enumerations

Standard deviation

across post-strata 4.1% 7.0% 6.7% 4.5%
Mean of centered factors 2.8% 2.9% 9.7% 6.4%
RMS of Bureau's

estimated standard errors 2.0% 5.9% unknown unknown

Thelevel and dispersion of avariable undoubtedly affect the numer-
ical values of H for the variable, so the comparisons between Table 1
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and Table 4 are important indicators of the relevance of P-12 to under-
counts. With one exception, we seethat all entriesin Table 4 fall between
the corresponding values for substitutions and for allocationsin Table 1.
The exception is the 5.9% sampling standard error for the raw factors,
which fals above the standard error for allocations and just below the
high estimate of standard error for multi-unit housing. Thus, in terms of
the quantities shown in Table 4, the P-12 variables do span the relevant
range, but none matches on all dimensions.

An important conclusion is suggested by comparing the figure of
2.0% in the lower left of Table 4 with the figures in the first row of
Table 1. The 2.0% is the RMS of the Bureau's estimates of sampling
standard error for its smoothed adjustment factors, and it is lower than
any of theRM Svaluesof H forlocal areasin Table . If theP-12variables
are at al valid analogues, then the estimated PES sampling variances are
evidently dominated by the variance due to heterogeneity measured by
HZ2. Sampling varianceis the contribution to error which the Bureau did
includein its error margins for adjusted local counts [U.S. Bureau of the
Census 1991]. Variance due to heterogeneity is one of the contributions
it did not include. The data here suggest that what was left out is more
important than what was put in.

Itislikely that some part of the true contribution from sampling vari-
ability wasalso left out. The 2.0% figurefor sampling standard deviation
isbelieved to be a considerable underestimate [ Fay and Thompson 1993,
Freedman et al. 1993]. In principle, sampling variance can be traded off
against variance due to heterogeneity by adopting a coarser or finer post-
stratification. But the variances due to heterogeneity implied by Table 1
are so large that the leeway for such tradeoffs appears rather dlight.

The particular use we are making of P-12, with our concentration on
heterogeneity alone and our direct calculation of H within post-strata,
avoidscertain difficultieswhich would confront more ambitious uses. We
are not calculating measures of overall error for local counts or shares.
Thuswe are not engaged in ng the augmentations or cancellations
of error that take place when the positive or negative estimated adjust-
mentsfor different post-stratain the samelocal areaare added together to
yield the total estimate for the area. We cannot do so with P-12, because
P-12 superblocks for different post-strata do not coincide. Heterogene-
ity implies error both in Census counts and in adjusted counts, and the
balance between these errors appears to be a delicate function of pat-
terns of cancellation when post-stratum contributions are summed. We
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are also not engaged in studying the interaction between errorsin local
counts due to heterogeneity and errors at all levels due to bias in post-
stratum-wide adjustment factors. We are studying errorsin an idealized,
bias-free setting. This setting would correspond to a PES in which the
post-stratum-wide adjustment factors were known perfectly. Our coun-
terparts of post-stratum-wide factors, that is, our ps, are unbiased.

The post-stratum-wide adjustment factorsin the real PES are known
to be biased. There is, of course, some ratio-estimator bias. That is a
side-effect of heterogeneity, and should be distinguished from the het-
erogeneity studied in this report, which affects estimated rates for local
areas within post-strata. There are other, more important, biases in the
adjustment factors estimated by the PES. Attempts have been made to
measure some of these by quality-control and followup studies, but only
at the level of large aggregations of post-strata. Biases are quantified
in [Breiman 1994] and in Table 15 of the Census Bureau's P-16 Project
Report. Unfortunately, this crucial table is omitted from the published
version [Mulry and Spencer 1993]. Thereis aso unmeasured “correla
tion bias’ resulting from the tendency for people missed by the Census
to be more likely to be missed by the PES estimates.

Essentially nothing is known about how the measured biases are
distributed among the post-strata, and even less about the size and distri-
bution of correlation bias. Thusthereis not yet basis on which definitive
assessments of the relative accuracy of adjusted and unadjusted counts
for local areas could be made—unless some rather heroic assumptions
areto beimposed onthe data. For recent reviews, see[Brown et al. 1999,
Wachter and Freedman 2000], but those findings seem to be disputed in
[Prewitt 2000].

In short, at thelocal level, what can be made are assessments of com-
ponents of error like heterogeneity, not assessments of relative accuracy.
To strengthen the assessments, it would be valuable to relate P-12 more
closely to the PES. The Census Bureau (as far as we can tell) has not
released data sufficient to calculate place-to-place correlations between
the variables studied here and undercounts. In principle, substitutions,
alocations, non-mailback rates, and multi-unit housing rates exist along
with undercount estimates for the 5392 PES block clusters. Even more
relevant than such cross-correlations would be autocorrel ation functions
for the variables, calculated as functions of physical or notional distance
betweenareas. The PESsamplesizeissmall for thispurpose, but somein-
sightscould begleaned. At present, the correlationsthat can be computed
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are those that are least relevant—across post-strata. Smoothed adjust-
ment factors correlate 0.60 with non-mailback rates, 0.23 with multi-unit
housing rates, 0.18 with substitution rates, and 0.07 with all ocation rates,
across post-strata. Substitution and allocation rates correlate 0.61 with
each other.

The PES sample is too small to give estimates of heterogeneity of
the precision obtained from P-12. At the local level, the data for an
H calculation are not available to us at all for most post-strata. At the
state level, using weighted data by post-stratum and calculating as if the
sampling weights were uniform within post-strata, we find RM S values
for H for state-to-state heterogeneity of 10% for gross omissions and
7% for erroneous enumerations. These figuresfall near the upper end of
the RMS state-level H valuesin Table 1. The PES estimates for single
post-strata are unstable to the extent that about 25% of post-strata come
out with negative estimated values of H2. The RMS values over all
1380 post-strata are bound to be more stable, and the figures suggest
that heterogeneity in components of undercount is at least as great as
heterogeneity in the P-12 variables.

4. Prior Literature

Notwithstanding the large literature on methods for small-area esti-
mation, there have been comparatively few evaluation studies and even
fewer attempts to quantify errors due to heterogeneity. The literature
on methods, building on [Deming 1948], is summarized by [Purcell and
Kish 1979, Platek et al. 1987, Ghosh and Rao 1994]. Uniform ratio es-
timators like the ones considered in this study are the oldest and most
widespread of all small-area estimators. They are sometimes themselves
called “ synthetic estimators,” though that name, coined in [National Cen-
ter for Health Statistics 1968], is more properly applied when such esti-
mators have been summed up within areas over strata or groups.

Parametric evaluations based on variance-component models have
been applied and studied [Battese, Harter and Fuller 1988, Prasad and
Rao 1990]. For that work, unlike P-12 and the PES, each of the small
areas for which estimates are needed contains sampled units; parameters
governing heterogeneity areidentifiable without the presence of acensus
or evaluation samplelike P-12. When direct comparisons and parametric
estimates are not feasible, evaluations of small-area estimates generally
take the form of sensitivity analyses and simulation studies.
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The literature on evaluation of small-area estimates tends to focus,
like our report, on problems of census adjustment. Thereisasimulation
study of synthetic estimation using two demographic groups[Schirm and
Preston 1987]. The areas are states plus the District of Columbia; the
variable isthe 1980 net Census undercounts. Lacking information about
levels of heterogeneity of the kind given in the present report, a stylized
model is used. Group-specific state effects are assumed to be indepen-
dent and identically distributed lognormal variables, with variances set to
levels loosely suggested by Census Bureau work on 1970 undercounts.

A form of evaluation that has cometo be called “ artificial population
analysis’ has been pursued with 1980 Census data [Isaki et al. 1987].
Related, as yet unpublished, work by Census Bureau staff has been con-
ducted with 1990 data. Both “across-the-board” (unstratified uniform
ratio estimates) and synthetic estimates have been studied, also with 1980
data [Wolter and Causey 1991]. The areas are states, counties, and 1980
Census enumeration districts (with typical populations of athousand or
s0). Thevariable under study isthe Census substitution rate (al so studied
in P-12), rescaled within strata to match certain 1980 national net un-
dercount estimates. The “acrossthe board” studies use six strata defined
by place-type within New England. The synthetic studies use 24 strata
defined by age, sex, and race within the whole United States. Results
are presented in terms of several aggregate “measures of closeness’ for
adjusted versus unadjusted values. A discussion of these studies can be
found in [Freedman and Navidi 1992].

Using block-level datafor components of undercount from the 1990
PES, within-group heterogeneity across blocks has been compared to
within-block heterogeneity across groups [Hengartner and Speed 1993].
In a study of Australian unemployment rates, small-area estimates are
evaluated by a direct comparison with tabulations from a contempora-
neous census [Feeney 1987]. Our work with P-12 is an approximate
version of this direct strategy, in which an extra-large sample from the
census plays the role of the census itself.

The Bureau has analyzed the P-12 data, concentrating on the statisti-
cal significance of state-to-state heterogeneity [Kim 1991, Kim, Blodgett
and Zad avsky 1993]. Severa approacheswere used, including log-linear
modeling of the P-12 variables, estimating state effects separately for
post-stratum groups. The test statistics measure excess heterogeneity
from state to state after dividing out the observed heterogeneity from lo-
cal areato local area. This confounds the effects of local heterogeneity
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with the effects of sample design. Given the high level of local hetero-
geneity, this analytic strategy has little power for detecting state-to-state
heterogeneity.

Methodslikethose of the present study have been applied to measure
state-to-state heterogeneity in six Census coverage indicators including
the four studied here [Freedman and Wachter 1994]. That work is based
on the whole Census, not on a sample like P-12, and it uses a post-
stratification with 357 strata instead of the 1392 used here. For various
state-by-state tallies, the impact of heterogeneity on loss-function analy-
sesis quantified. Theimpact of other omitted or underestimated sources
of error on the Census Bureau’s loss function analyses for 1990 has been
reviewed [Freedman et al. 1994].

Previousinvestigators have detected residual heterogeneity in prob-
abilities of enumeration by the 1990 census [Alho et al. 1993]. The
investigation focused on minaorities in central cities across the four cen-
sus regions, and used logistic regression. One explanatory variable was
the multi-unit housing rate, which turned out to be strongly associated
with capturein the census, at least in two regions. Substitutionsand allo-
cations were excluded from the model, but were also strongly associated
with capture in the census. Overall, the impact of heterogeneity is esti-
mated as being roughly half the size of the net undercount. Geographic
heterogeneity at state or substate levels was not explicitly represented:
the modeling was done at the level of individual s within broad groups of
post strata, some explanatory variables being defined at the post-stratum
level.

Many observers favor census adjustment; illustrative citations are
[Schirm and Preston 1987, Ericksen, Kadane and Tukey 1989, Wolter
and Causey 1991, Mulry and Spencer 1993, Zaslavsky 1993, Belin and
Rolph 1994, Steffey and Bradburn 1994, Anderson and Fienberg 1999,
Cohen, White and Rust 1999, Prewitt 2000]. Other observers find that
census adjustment would introduce more error than it removes [Freed-
man and Navidi 1992, Hengartner and Speed 1993, Freedman et al. 1993,
Breiman 1994, Freedman et a. 1994, Freedman and Wachter 1994,
Brown et al. 1999, Darga 1999, Wachter and Freedman 2000, Skerry
2000, Stark 2000]. There are apriori reasons to favor adjustment; on the
other hand, there are substantial biases in estimated adjustment factors,
and heterogeneity ispervasive. What is difficult to determine from avail-
abledataisthe extent to which biases reinforce each other or cancel, even
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at the state level; the bottom-line impact of heterogeneity on accuracy is
another major issue.

On the wider question of amounts of heterogeneity to be expected
for variables of various kinds at local levels, we are aware of no sys-
tematic empirical studies. The anaysis of local Census data as a field
of study is summed up by [Myers 1992]. Better empirical knowledge
about geographical heterogeneity in demographic behavior isimportant
not only for small-area estimation but also for the modeling of long-term
demographic change. Parish-to-parish variability in English historical
data has been analyzed [Wachter 1992]. Stochastic demographic models
which recognize geographic levels of randomness in human population
processes are the eventual goal.

5. Conclusions

In summary, we have introduced a direct measure of heterogeneity,
H, and used it to measure heterogeneity from local areato local areafor
four variables related to Census coverage. The source of the data is the
Census Bureau's P-12 sample from the 1990 U.S. Census. The hetero-
geneity we have measured isresidual heterogeneity after stratification by
age, sex, race and ethnicity, renter-owner status, place-type and broad
geographical division of the country. Thelocal areas are units with total
populations around 10,000. Wefind that the area-to-area variance within
strata—reflecting geographical heterogeneity—isroughly comparableto
the variance from stratum to stratum, even for this fine a stratification.

The variables examined in this study are believed by the Census
Bureau to offer meaningful analogues to Census undercount. If thisis
true, then our resultsimply that errorsdueto heterogeneity fromlocal area
tolocal areadominate errors dueto sampling variability inthe small-area
ratio estimation step of the Bureau's undercount estimates. The errors
treated as negligible in the calculation of error margins are larger than
the errorsincluded in the calculation. It followsthat the Census Bureau's
published margins of error for adjusted Census counts for local areasare
likely to be substantial underestimates.

For stratified small-arearatio estimation, our results suggest that the
popular “default option” of treating residual heterogeneity as negligible
isaserious mistake. When direct measures of error due to heterogeneity
are unavailable, a better default option would be to treat residual hetero-
geneity as being on a par with the variance explained by the stratification
factors.
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Variableslikethe P-12 ratescantypically vary by 5, 10 or 20 percent-
age pointsfrom local areato local area, even for people of the same age,
sex, race, and ethnicity living in communities of the same general sizein
the same broad areas of the country. In the absence of direct evidenceto
the contrary, simulation studies of the efficacy of small-area estimation
should allow for substantial local heterogeneity. “Diversity” isabyword
in America’s political vocabulary. Diversity is certainly the rule, when
one looks from place to place across America with the Census Bureau's
1990 P-12 sample.
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Appendix
A Simple Binomial Model

Formula (4) is motivated by the following idea. Fix aterritory and
demographic group. Localitiesareindexedby i = 1, ..., L. Focuson
aparticular property, e.g., living in multi-unit housing. Suppose people
in that territory and group are independent, and in locality i thereis a
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common probability p; of having the property in question. Heterogene-
ity is amplified by binomial variation, and it is an estimate of binomial
variation that is the correction termin (4).

More particularly, from locality i we choose a block at random and
observe the N; persons in that block; X; persons have the property in
guestion. Conditioned on the choice of blocks, the X; are independent
binomial variables, with N; for the number of trials and success proba-
bility p;. Now p; = X;/N; and p = ). p;/L. Of course,

N R 1
E(p) =pin E() =7 Z pi =P, (5)
while
. pi(1—pi) . 1 pi(1—pi)

var(p;) = T, var(p) = 72 2,: T’ (6a)

A 1pi(1—pi)
i =" 6b
cov(pi, p) 2 N; (6b)

The expected value of the naive estimator (3) is now easy to work out,
andis

%Z(Pi_p)z—l—A, where A:%(l_%)z%—lm @

Thus, A isthe excess binomial variance. Finally—by design—the ex-
pected value of the correction term in (4) equals A, just canceling the
contribution from excess binomial variance.

Data-dependent Areas

Our measure H has simple propertiesin simple settings. If the local
areas have fixed boundaries and samples of fixed numbers of individual
post-stratum members are drawn from the local areas, then the theory
just developed applies, and A2 is unbiased. (The binomial formulas
are easily adapted to sampling at random without replacement.) How-
ever, P-12 isnot asimple setting. Data-dependent aggregation of blocks
into superblocks, to be described shortly, implies local areas with ran-
dom boundaries. The numbers of sampled individuals in these areas are
themselves random, not fixed, and that leaves the correction term in the
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definition of A2 in need of justification. Sampling block clustersinstead
of individuals introduces a term for cluster-level heterogeneity into the
expectations. We sketch our treatment of the data-dependence first and
the term for clustered sampling next.

Thedata-dependent boundariesturn p; and H into random quantities
with expectations, and the goal isto justify the formulas

R N 1
E(p)) ~E(p;) and E(H? ~E(H? + - Z diWi. (8

In the display, W; accounts for within-area between-cluster covariance
and d; isthe analog of afinite-sample correction factor. Both are defined
below. We believe both are small, but our argument is only heuristic,
and that is one reason why our conclusions in this paper are somewhat
tentative.

The Census Bureau’s aggregation process, merging sample blocks
into sample superblocks, may be described as follows [Bateman 1991].
Within each post-stratum, after the P-12 sample has been drawn, mem-
bers are pooled together from block after block, following the sequence
of blocksinthe samplelist, until aminimum of ten membersareincluded
or astate boundary isreached. Post-stratarepresent afine-grained subdi-
vision of the population along demographic lines, so most blocks contain
at most a handful of people from the same post-stratum. The stopping
rule for superblock completion typically puts half a dozen blocksinto a
superblock.

The list for the sampling frame snakes its way through the territory
spanned by the post-stratum from placeto place among places of the same
placetype. The sampled blocksamalgamated into one sample superblock
are therefore often but not always drawn from the same contiguous area.
Superblocks are put together separately for each post-stratum and su-
perblocks formed for different post-strata do not coincide.

For our formal arguments, we use the word “locality” for the local
area defined to correspond to a particular superblock in the following
way. Split the ordered list of blocksin the sampling frame randomly at a
uniformly distributed point between thelast sampled block inthe previous
superblock and the first sampled block in the current superblock. Repeat
the procedure between the current superblock and the succeeding one.
That gives two breakpoints. The locality corresponding to the current
superblock isthe set of al blocksin thelist between the two breakpoints.
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The superblock then equals the subset of blocks in the locality selected
into the sample.

The order in the sampling frame maintains the integrity of address-
register areas and Census district office areas, so a locality is often a
contiguous or nearly contiguous area, but not always so. The rate p; is
calculated for al the membersin all the blocksin the the sampling frame
intheith locality. It isarandom quantity because it depends on sample
selection, on the operation of the stopping rule, and on the outcome of
the splitting. The randomnessin p; turns H into a random quantity as
well.

We can write p; in the form

R 1
pi= ;smf(cm €Ss). )

In our notation,

&y isthe binary outcome for the mth member of the post-stratum in
theith locality. For example, for multi-unit housing rates, &, equals
1if the corresponding person lives in multi-unit housing and equals
Oelse

¢ 1stheblock cluster (P-12 sampling unit) to which the mth member
belongs.

S is the set of clusters in the sample in the ith superblock, s in
number; a subscript for i is suppressed.

J istheindicator function of a set.

The argument that E(p;) ~ E(p;) has four steps. First, we ex-
press E(p;) as the expectation of the conditional expectation given N;,
the number of members in the ith superblock. Second, we argue that
E(J(cm € S)IN;) is nearly constant in m. That entails arguing against
any sizable endpoint effects stemming from the random boundaries of
thelocalities. It also entails arguing that conditioning on N; haslittleim-
pact, inasmuch asthe stopping rule produces values of N; that exceed the
required minimum of 10 members per superblock only by the overshoot
contributed by the last included block. Third, we count up terms with
&y, = 0and &,, = 1; theanswers are familiar combinatorial expressions.
Fourth, we argue that the people per cluster in the universe divided by the
people per cluster in the sample should be close to unity and not strongly
associated with p;. That is enough to conclude that E(p;) ~ E(p;).

The sameline of reasoning leads, with more effort, to an approxima-
tion for E[(p; — pi)?]. Some terms coincide with the binomial-formula
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terms found in the definition of 2. One set of cross-product terms,
involving clusters in different localities, cancels. Another set of cross-
product terms, involving pairsof clustersinthe samelocality, contributes
the terms d; W; discussed in the next subsection.

These considerations are in principle further complicated by the fact
that the PES and P-12 samples are stratified samples with some variation
in sampling weights. Sampling stratum membership is not indicated
in the P-12 dataset. Sampling strata and sampling weights have mgjor
effects in the PES, but we expect their effects in P-12 to be minor for
several reasons, including the absenceof movers, thelack of non-response
reweighting and special small-block samples, and the fact that our p and
p are not weighted averages but simple averages across localities.

Effects of Clustered Sampling

The P-12 sampleisaclustered sample primarily becauseindividuals
areclusteredinto blocksand secondarily becauseblocksareclusteredinto
block clusters (containing one or two blocksin most cases). In the pres-
ence of clustered sampling, heterogeneity from cluster to cluster within
localities makes a downweighted but nonzero contribution to sampling
variability in " (p; — p)? and introduces, as we have said, a term of
the form d; W; into E(FI 2). The average within-cluster covariance in the
universe of members of the ith locality is given by

Zm;ﬁm/ (Xm — pi) (X — pi)J(cm = ¢y € U)

Wi = S MM, —1)

(10)

The sumsrange over al clustersin the ith locality, and M. isthe number
of membersin the cth block cluster. The denominator is the number of
terms in the numerator. For the contribution to sampling variability, W;
must be multiplied by d;, where

d; = E(Z M. (M, — 1)) / (N,- Z MC). (11)

If members of the post-stratum were spread out with one member per
cluster, d; would be zero. If each cluster always had 10 members, forc-
ing M, = N; = 10 under the stopping rule and creating single-cluster
superblocks, d; would be 9/10. (With our notation, if the ith superblock
in the sample has index ¢ in the sampling frame, then N; = M_.)
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The covariance factor W; measures how much more often the out-
comes for two members of the same cluster agree compared to the out-
comes for two randomly chosen members of the whole locality. At the
extreme, each cluster could consist entirely of ones or entirely of ze-
ros, irrespective of size, and then we would have W; = p;(1 — p;),
the variance of the outcome for a single randomly-selected member of
the locality. The downweighting d; would scale this variance by a kind
of effective sample size for the clustered sampling. Usually, however,
knowing X,, givesonly limited information about X,,/, and W; will be
closeto zero.

Theonly non-zero contributionsto W; comefrom clusterswithtwo or
more members; large contributions only from clusters with many mem-
bers. Clusters with many members appear to be rare. The identity of
blocks is erased in the P-12 data set; however, we have detailed census
and PES data for metropolitan areas outside central cities in the Pacific
division, nicknamed the “Berkeley data set.” In these data, of the clus-
ters that contain any post-stratum member, about 20% contain only one
such person. (We are averaging over post-strata.) Another 16% contain
2 people, and only about 20% contain 7 or more. The d; factors average
out near 1/2.

We cannot measure W; directly from P-12, and the PES sample is
much too small for stable estimates. There is, however, an empirical
test of the extreme hypothesis that all or most of the observed values of
H? are contributed by within-cluster covariances. Under this hypothe-
sis, W; would not increase as localities and superblocks are merged into
superlocalities and supersuperblocks, and d; would decrease in accor-
dance with the formula (11). Values of H have been inspected under a
sequence of mergings for selected post-strata: H falls off substantially
more slowly than its predicted value under this extreme hypothesis. Any
other outcome would be surprising; the small numbers of post-stratum
members per cluster makes the sampling quite close to random sampling
of individuals and thus to the case where the within-cluster covariance
contribution is absent.

Both between-locality heterogeneity and between-cluster within-
locality heterogeneity are forms of heterogeneity. H remains a mea-
sure of heterogeneity whether or not the W; contributions are small. But
between-locality heterogeneity isof primary interest; itisthe contribution
which directly affects estimates for whole local areas. The argumentsin
this section support the view that in the P-12 data set the approximation
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E(H?) ~ E(H?) is aworkable one, and that the values in Table 1 are
principally to be interpreted as evidence of heterogeneity from locality
to locality.

The Standard Errors for Table 1

The nine Census divisions represent, with a handful of exceptions,
disioint groups in the sampling scheme and their RMS H2s are essen-
tially independent of each other. The squared measure H2 in Table 1 is
the weighted mean of the nine A 2s for the divisions, weighting by the
number of post-stratain each division. For our calculation we make the
assumption that the expected values of the nine measures for the divi-
sions are al the same (cf. Table 4), while the nine variances differ. We
write down an unbiased estimator for the variance of the overall mea-
sure as a weighted average of the squared deviations of the divisional
measures from the overall weighted mean. The weights are functions
of the numbers of post-strata in the divisions. This estimate should be
something of an upper bound, because part of the variability in divisional
measures must reflect small differences among expected values rather
than sampling variability as assumed. We convert to square roots with a
delta-method approximation.

Two alternative estimates for the sampling standard errorsin p are
givenin Table 1. Anindirect approach isrequired because theidentity of
the sampling unitshasbeen erased by the superbl ock aggregati on process,
to our knowledge, the Census Bureau has not published direct estimates
of standard errors for P-12. The low estimate in Table 1 is obtained
by treating individuals as if they were the sampling units; the sampling
variancefor apost-stratum-wide p isthen computedas p(1—p)/(Q_ N;).
The high estimate treats superblocks as if they were the sampling units.
Then the sampling variance is computed as

1 A. A 2
m;@z - D),

where L is the number of super-blocks associated with the post-stratum
in question. These estimates apply to P-12 itself; finally, we rescale in
proportion to sample size, as measured by block clusters.



