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Consider random variables which are orthogonal, with mean 0 and variance 1, and uniformly
bounded fourth moments. The CLT need not hold—i.e., the sum need not be asymptotically
normal—because independence is not assumed. (The CLT, being a theorem, remains true.) We
present several examples, normalizing the sum S,, = X| + - - - X;, by 4/n, or by

The examples are relevant to general forms of the OLS model ¥ = Mg + € that require only
cov(e|M) = 021, rather than IID errors; normalization by D,, is akin to normalizing regression
statistics by . The punchline: the usual asymptotics need not hold for the OLS estimator B, without
the assumption of IID errors given M. (We write M for the design matrix to avoid confusion with
the random variables X;.)

(*) Conditions. The X; have E(X;) = 0 and E (ij) = 1. Furthermore E (XJ‘.‘) is uniformly
bounded, and E(X; Xy) = 0 for j # k.

Example 1. Let Z and {Y;} be independent. Suppose the Y; are independent, E(Y;) = 0,
E(Zz) = E(sz) = 1. Finally, suppose E(Z*) and E(Y;‘) are finite. Let X; = ZY;. These random
variables satisfy the conditions (), but S,, /4/n isn’t asymptotically normal: the limiting distribution
is normal, multiplied by Z. Normalizing by D,, does give asymptotic normality, because Z cancels.

Example 2. Let U; = 0 or V2 be a sequence of random variables constructed as follows.
With probability 1/2, the sequence consists of a long block of 0’s, followed by a very long block
of +/2’s, followed by a very very long block of 0’s, etc. With the remaining probability 1/2, the
0’s and /2’s are interchanged. The Y; are IID +1 with probability 1/2, independent of {U;}. Let
X; = U;Y;. Again, these random variables satisfy the conditions (x). Clearly, max; U j2 = 2 and

D,zl — 00, S0 mMax;<p sz = o(D,zl). Furthermore, var(S, |U) = D,%. Thus, S,/ D,, is asymptotically
normal. With rapidly increasing block length, D,% /n oscillates between 0+ and 2—. So S, /4/n
isn’t asymptotically normal.

Our next example involves &§; = sin(j6), where 6 is uniform on the circle [0, 27r) and j is
an integer; the main interestis j = 1,2,....If z; = exp(ij0) withi = V/—1 and exp(z) = €%,
then &; is the imaginary part of z; = cos(j#) + i sin(j6). The next lemma follows by computing
moments.

Lemma 2. The z; all have the same distribution; furthermore, for each j, as n — o0, the joint
distribution of z, and z; converges weak-star, the two variables becoming independent.
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Lemma 3.
(1) E(&;) = 0;in fact, all odd moments vanish.
(ii) E(gf) = 1/2 and E(sj“) =3/8.
(iii) E(&j&) = 0for j # k.
(iv) Z?:l cos(j#) is the real part of

(10 _ ,i0

lI’n(e) = T’

and Z?:l sin(j0) is the imaginary part.
(V) Z;lzl sin?(j6) = %(n — gn) where g, = Z;lzl cos(20) is the real part of W,,(20).

Example 3. Let X; = ﬁfj. Conditions (x) are satisfied. However, §,, converges in distri-
bution, and D? is of order n. Whether we normalize S, by +/n or D,—or not at all—there is no
asymptotic normality.

Sourav Chatterjee suggested that examples could be based on U -statistics. For ¢ = 1,2, ...,
let the U, be IID, with P(U, = £1) = 1/2. Let

- T o= (Ru) - (1w)

1<j#k<n =1

whose distribution is asymptotic to ”(X12 — 1). Note that Q,,+1 — O, = 2( ZZ:] U()Un+].

Example 4. Let T; = Zézl Ug/jandlet Xj11 = TiUjyy for j =1,2,.... Let X| = Uj.
Conditions (x) are easily verified; for the rest, we rely on simulations. To begin with, S, is very
skewed to the right, so cannot be asymptotically normal. On the other hand, S, /D,
not far from normal—has a negative mean. We can replace 7; by f(7}) for suitable functions f,
although var f (7;) may thendepend alittleon j andn. If f(x) = x%, then S,, itself has a much longer
tail than the normal; indeed, S, is roughly like a symmetrized log normal variable. By contrast,
S,/ D,, is short-tailed and bimodal. (Numerator and denominator are somewhat dependent.) Neither
Sy /+/n nor S,/ D,, is asymptotically normal.

Back-of-the-envelope arguments suggest
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where B is Brownian motion. Because the summands are uncorrelated,

MR A 1< |
vamﬁ;f(ﬁ;w)ujﬂ =;gvar f(W;Ug) :0(E> 3)
Likewise,
n/K J n/K J
2l = e nf (k) @

The singularity near O therefore seems unimportant.

Example 5. (Chaterjee.) Let the summands be U; Uy, with j < k ordered by k and within k
by j. Summands are identically distributed, taking the values £1 with probability 1/2 each. The
summands have mean 0; the square of each summand is identically 1; summands are orthogonal.
Consider the subsequence m, = n(n 4 1)/2 where the sum S,,, is

Y yu= %[(Zn:w)z - <ZU§)] ~ %n(xf -1
(=1 =1

1<j<k<n
We normalize by v/n(n + 1)/2 = n/+/2; the limiting distribution is (x? — 1)/+/2.

Convergence seems to hold along the full sequence of n’s. More specifically, suppose m, <
m < my41. The normalizing ./m ~ n. The difference between the sum at m and at n(n + 1)/2
is a sum of order n terms, which is Op(y/n) = Op(/m). After division by /m, the difference is

Op(1/3/m).

The distribution of ( X12 - 1)/ /2 has mean 0 and variance 1, but is longer-tailed than N(O,1).
For instance,
P{(x} - D/V2 > 2.6} = P{Z% > 1 +2.6V2} = .03,

while P{|Z| > 2.6} = .009, where Z is N(0,1). The tail area is off by a factor of 3, and it gets
worse further out. On the other hand, annoyingly,

P{OF = D/v2>2) = PiZ1 > 1 +2v2) = P(1ZI > 196) = 05,
The first probability is one-sided:
P{(x2—1/V2 <=2} = P(Z2 <1 -22} =0,

but the symmetric tail area is very close.

Steve Evans has another construction, which gives a sequence X1, X», ... of uncorrelated
random variables having mean 0 and variance 1, with subsequences of

L{X + -+ X)) //n}

close to any distribution with mean 0 and variance 1.

For regression asymptotics assuming independent errors, see
http://www.stat.berkeley.edu/users/census/Ftest.pdf



