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Abstract

‘Dutch book’ and ‘strong inconsistency’ are generally equivalent: there is a
system of bets that makes money for the gambler, whatever the state of nature may
be. As de Finetti showed, an odds-maker who is not a Bayesian is subject to a dutch
book, under certain highly stylized rules of plaa factoften used as an argument
against frequentists. However, so-called ‘objective’ or ‘uninformative’ priors may
also be subject to a dutch book. This note explains, in a relatively simple and
self-contained way, how to make dutch book against a frequently-recommended
uninformative prior for covariance matrices.
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1. Introduction

Our aim here is to sketch a relatively simple and self-contained argument to
show that dutch book can be made against certain ‘objective’ priors, namely, in-
variant measures that have infinite mass and are used as ‘priors’in formal Bayesian
calculations. Such improper priors are often said to be ‘uninformative’. Our main
example involves a prior that was recommended by Jeffreys —and adopted by many
Bayesians — for use in multivariate normal distributions where the covariance ma-
trix is unknown.

To fix ideas, we begin with de Finetti’s dutch-book argument against the fre-
guentists. Let2 be a finite set. A bookie has to post finite, positive odds on
every subset of2, apart from the empty set arsel itself, accepting bets on each
set at those odds. Bets can be laid in any amount (positive or negative) on any
combination of sets. The Bayesian bookie will have a prior probabilitn €2,



and will post oddsr(A)/[1 — 7w (A)] on A. The non-Bayesian bookie posts odds
compatible with nor. In this context, ‘dutch book’ means a system of bets that —
no matter whatv is chosen fronf2 — yields a positive payoff to the bettor.

Plainly, dutch book cannot be made against a Bayesian bookie, since the ex-
pected payoffis 0. Onthe other hand, as de Finetti showed, dutch book can be made
against any non-Bayesian bookie. The relevance to applied statistical work is not
entirely clear, since few statisticians place bets when doing data analysis, and few
bookies follow de Finetti’s rules for accepting bets. However, the argument has
often been deployed against the frequentists: for discussion, see Freedman (1995).
The possibility of a dutch book is sometimes referred to as a ‘money pump’: if
you can win a dollar, you make the poor bookie play the game over and over again,
pumping money from him to you.

De Finetti's example can be viewed as a prediction problem: Nature will choose
o from 2, and the odds are a stylized way of describing opinions about the future.
Freedman and Purves (1969) modified the argument to cover a two-stage process
with conditional bets. The pair, z) is chosen at random fror, wheref is an
unknown parameter; is observed first; second. (The parameter space and the
observation space are required to be finite, as in de Finetti’s work.) The gambler
is allowed to bet on, and bets are allowed to dependxanThe concept of dutch
book must be extended slightly: the clever gambler can arrange to have a positive
expected payoff from a non-Bayesian bookie, simultaneously f@r-albut may
have to take a loss for some combination® pk, andz. Some observers may
view the passage from unconditional to conditional bets as a small variation on de
Finetti’s setup; others consider this generalization to be a major — and subversive —
idea.

Our main example involves prediction, in a setting like that of Freedman and
Purves (1969) — although the spaces are infinite. There amdependent ob-
servations from a common multivariate normal distribution, having mean 0 and
(unknown) positive definite covariance matiix The observations are denoted
X1, ..., Xy, they are used to predict an+ 1st observation, denotéefl. Indeed,
having observed, ..., X,, the statistician is required to produce a ‘predictive
distribution’ for Z. If the Jeffreys prior is used to generate this predictive distribu-
tion, the statistician is exposed to a dutch book.

A similar example can be constructed for estimation (Section 2.2), but the ar-
gument is a little harder. Stone (1976) has the concept of ‘strong inconsistency’,
defined below. In Section 2, we show that the Jeffreys prior leads to strong incon-
sistency. Section 3 demonstrates that strong inconsistency is equivalent to a dutch
book. Section 4 reviews the literature.
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2. The Main Example

LetX, ..., X, beindependentrandopx 1 vectors, withacommon, (0, X)
distribution; the covariance matrix is p x p and positive definite. Here;, >
p > 1. An (n + 1)st observatiorZ will be drawn independently fronv, (0, %).
How can the datX = (X1, ..., X,,) be used to predicZ? Since the problem is
invariant under multiplication by @ x p non-singular matrix,

Xi > AX;, Z - AZ, ¥ — AT A,

aninvariant ‘prior distribution’ might suggestitself. (Quote marks are used because
the prior isimproper, with infinite total mass.) Theinvariant priefis/|x |(P+D/2,

It is unique up to a positive constant, and can be recognized as the Jeffreys prior
J1I1dZ, wherel is the Fisher information matrix and¥ | is the determinant of/.

A predictive distribution forZ can be computed from the Jeffreys prior, by a
formal application of Bayes rule. In more detall, ¢gtx, z|X) be the multivariate
normal density of X, Z) given X; similarly, ¢ (x|X) is the multivariate normal
density ofX given X. Here,x € (R?)" andz € RP. Formally, the ‘predictive
density’ for X, Z — in advance of data collection — is obtained by integrating
against the Jeffreys prior:

6(x,2) =f¢<x, D) /|| P2, 1)

Likewise, the ‘predictive density’ foX is

¢(x) = f ¢ (x|2)dz /| x| P2, 2
According to ‘Bayes rule’, the ‘predictive density’ faf whenX = x is

d(zlx) = p(x,2)/P(x). (3)

We have quote marks because the prior is improper, so

//(,b(x,z)dxdz :/gb(x)dx = 00.

On the other handp(z|x) is a proper density foZ, becausef¢ (x, z|X)dz =
¢ (x|2), 50 [$(x, 2)dz = $(x), and [p (z|x)dz = 1.
The main result of this section can now be stated: the predictive density)
is strongly inconsistent, and dutch book can be made against a statistician who
uses it. (Strong inconsistency is defined below.)
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Theorem 1. Letn > p > 1. Suppos&y, ..., X,, Z are independeny, (0, %).
The predictive distribution foZ given X1, ..., X,,, computed from the Jeffreys
prior on the covariance matri¥, is strongly inconsistent.

An outline of the proof comes next, with details in Sections 2.1 and 3. Let
S=3Y"_1X;X;'. We takeX; andZ to bep x 1 column vectors, s§isap x p
matrix. By eliminating a null set, we can talseto be positive definite. Writ&
for the first coordinate of , andS;1 for the (1,1) element af. Then, as is almost
obvious, the sampling distributioRg of 7 = Z;/+/S11 does not depend on:

VnT ~ t,. (4)

Here, ~" means ‘is distributed as’, ang is r with n degrees of freedom.

WhenX = x, the predictive distributio® (dz|x) for the (n + 1)st observation
Z, computed formally by Bayes rule from the Jeffreys prior, has a densify”on
given by

¢ (z|x) = C/V/|s|(1+ z's~1z)n L, (5)

whereC is a constant, and= ) ’_; x;x;’ is the value of5 at the observed = x.
As before, we take; andz to bep x 1, sox is p x n ands is p x p. The proof
of (5) is ‘just’ calculus (Section 2.1). The constantdepends om and p, not
onx orz.
Next, the predictive distributio®;, of T = Z1/4/S11 whenX = x does not
depend orx; indeed,
n—p+1T ~ ty_pya, (6)

as will also be proved in Section 2.1. By (4) and (6),
D1 # Do. (7)

Inequality (7) is the key point, and strong inconsistency will soon followp (3 1
then D1 = Dy; that is why we assumegd > 1.)

Let Ey, denote expectation relative to our sampling modelXey. .., X,, Z,
and recall thatD (dz|x) is the predictive distribution foZ given X = x. ‘Strong
inconsistency’ means there is a bounded measurable funtiom anc > 0 with

/f(x,z)Q(dZIX)+e < Ex{f(X,2)} (8)

for all x andX. Section 3 discusses the definition in a more general framework,
but here is the point. The left hand side of (8) depends oot X; the right hand
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side, onX notx. Thus,
o= SUD/f(x, 2)Q(dz|x) < irzlf Es{f (X, 2)} = B.

Consider a ‘lottery’ that payg (x, z) whenX = x andZ = z. The expected value
of the lottery, in advance of data collection, is at leasThus, a statistician (of the
kind envisaged by de Finetti) should pAyto buy the lottery. On the other hand,
after seeingx, a statistician who uses the predictive distribut@ishould happily
sell the lottery forx, no matter whaiX proves to be. The gap betweerand g
reflects an inconsistency in the pricing, and leaves room for dutch book against
Strong inconsistency is easily demonstrated, by construgtiagde. In view
of (7), there is a bounded measurable funcfiande > 0 with

| hwps@n e < [ nwbotav) ©)
Let f(x, z) = h(z1/+/s11), Wherezy is the first coordinate of thg x 1 column
vectorz, andsy1 is the (1,1) element of the x p matrixs = Y} ; x;x;". Now (9)

boils down to (8), by the change-of-variables formula for integrals. On the lefthand
side, Dy is the Q(dz|x)-distribution ofz1/,/s11. On the right hand sidd)g is the
sampling distribution of = Z1/./S11. With our £, both sides of (8) are constant,

by (4) and (6). This completes a sketch of the argument for strong inconsistency.
Some details are given next, and dutch book is discussed in Section 3.

2.1 Some Details

We begin with (5). Step 1 is showing that the predictive dengity) of
X = (X1, ..., X)), computed from the model and the Jeffreys prior in advance of
data collection, i§n,p/|s|"/2, whereC, ,isaconstanty = ) ! ; x;x;’ is positive
definite (a.e.), an¢k| is the determinant of. As in (2),

d(x) = fqb(xlE)u(dE),
whereg¢ (x| X) is the multivariate normal density,
¢(x|Z) = (2m)"PPIE| T2 exp(— 5 Yy k2 ),

andu(dx) = dx/|2|P+D/2 s the Jeffreys prior. As before, = (x1, ..., x,),
with x; a p x 1 column vector, an&@ is ap x p positive definite matrix. Since
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tracg L M) = tracg M L) when both products are defined,
n
Y xSy =tracg =) = tracgsV* x5 Y?). (10)
i=1
Since|LM| = |ML| for p x p matrices,
|E|—n/2 :|S|—n/2 |S_1/22S_l/2|_n/2. (11)

So
$(x) = / ¢ (x|Z)u(dX) (12)
15172 [y si2mias)
=|s|—"/2/w<l,,xp|2m(dz>,

wherel,, , is thep x p identity matrix,

Y(s|Z) = Dy, p(s) exg — %tracqsl/ZE—lsl/Z)]’

Dn,p(s) — (27_[)—}1]7/2 |S—1/22S—1/2| —}’l/2

The first line in (12) is just (2). The second line holds by (10) and (11), with a
bit of algebraic juggling for the constants. The third line holds because the Jeffreys
prior w is invariant. Equation (12) is the required formula for the predictive density
¢(x) of X = (Xq,..., X,): the lastintegral in (12) i€, ,, the mystery constant
in that density. (Computing the integral is a task not lightly to be undertaken.) This
completes Step 1 in proving (5).

Step 2. The predictive density fafr whenX = x is obtained from (3), as the
quotient of (1) and (2). In view of (12),

¢ (21x) = (Cut1,p/Cnp) Is"? |s + 22/| 70D/, (13)
This simplifies to (5), because of the identity

1)) +ww'| =1+ w'w, (14)



with w = 5712z, a p x 1 column vector. To verify (14), lef rotatew into
(@,0,...,0/,S0LL" = I,x, anda® = w'w. The left hand side of (14) equals

|LL 4+ Lww'L'| = |I)x, + Lww'L'| =1+ d?.

This proves (14), completing the argument for (5).

We turn now to (6). Let; be thejth coordinate of thep x 1 column vectog;
recall thatsy1 is the (1,1) entry of the matrix. What is theQ (dz|x)-distribution
of z1/./511? Whens = I,,, ,, the density is proportional to/11 + z32)"~P+2/2,
as one shows by integrating atjt, . . ., z,,. To do the integral, set

zj =V1+ 22w, (15)

for j =2,..., p. This proves (6) when = I, .
Next, Q(dz|x) is the distributiongy, on R? whose density is

é(zlx) = C/V/|s|(1 + /s~ 1z)n+1, (16)

Dependence on is only throughs = Y ""_; x;x;": see (5). Abbreviaté = I, .
Theng; is theg;-law of s¥/%z. What remains to be seen is that

theg;-law of (s'/2z)1/./s11 does not depend an (17)

where(s1/2z)1 is the first coordinate of the x 1 column vectos/?z. Claim (17)

is immediate from the invariance gf under rotation:,/s11 is the£, norm of the
first row of s1/2. (Bear in mind thas'/2 is symmetric.) Since; is the predictive
distribution forZ whenX = x, the argument for (6) is complete, and with it, the
proof of Theorem 1.

2.2 Estimation

We have established strong inconsistency when the Jeffreys prior is used in a
multivariate normal prediction problem. A parallel —but more technical —argument
yields the same conclusion in an estimation context. Here is a brief sketch; readers
can skip to Section 3 without loss of continuity. L¥1, ..., X,, be independent
randomp x 1 vectors, witha commoN , (0, %) distribution. Consider the Jeffreys
prior distributionu(d ) = dx/|2|P+D/2. Then the formal posterior distribution
fore = =~1givenXy, ..., X, is Wishart:

0~ WSt pon, (18)
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with § = Y"7_; X;X;". This is non-trivial, but can be verified starting from the
fact that the Jeffreys priqu is invariant under the transformation — £ 1, by
Jacobian trickery. Given S, the posterior density e © 1 with respect tqu is
proportional to

1
10.5]"/2 expl—Strace® )1,

which is the density o (S~1, p, n), as in Eaton (1983, p. 240). One analog of

the statisticT is
6

U—m,

whereS!tis the (1,1) element &§—1. When — given the datag-has the distribu-
tion (18), then
U~ %7 (19)

for each S, as is immediate from the definition of the Wishart: ¢jf are iid
N,(0, K), then)"! , ¢z’ ~ W(K, p,n). However, under the sampling model,
SisW(z, p,n), and

U™ X pi1 (20)

for any X, by Proposition (8.7) in Eaton (1983). The fact that (19) and (20) are
different for p > 1 leads to strong inconsistency, as before.

3. Strong Inconsistency is Equivalent to a Dutch Book

Our purpose here is to show that strong inconsistency is equivalent to a dutch
book. A ‘measurable prediction problem’ consists of: Xi)e X'; (i) Z € Z,
which is to be predicted fronX; (iii) a set of parametric modelsP (dx, dz|6) :

0 € ®} specifying the joint distribution ok andZ. Here, X andZ are measurable
spaces, while&X and Z are measurable functions on some underlying probability
space. A ‘predictive distributionQ(dz|x) is a distribution forZ that depends
on the observed valu¥ = x. If x — Q(A|x) is measurable o’ for every
measurablel C Z, we will say thatQ is measurable.

One way to evaluat® involves gambling scenarios, as follows. Consider a
measurable subsét ¢ X x Z and letC, = {z : (x,z) € C} be thex-section
of C. Then a ‘'simple payoff function’is

Ve(x,z) = Ic(x, 2) — Q(Cylx). (21)

If O is measurable, thefx, z) — V¢ (x, z) is measurable by the usual argument,
starting from measurable rectangles.
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By way of interpretationy¢(x, z) is the net payoff to a gambler who puts
down Q(C,|x) dollars to get a dollar iZ € C. This net payoffis - Q(Cy|x)
if Ze C,and—Q(Cy|x) if Z ¢ C. No money changes handsGf = ¢ or Z.
(In particular, there are no interesting betsxon

Now, consider measurable subséts ..., C, of X x Z. After X = x is
observed, allow the gambler to payx) Q(C; . |x) in order to geb; (x) dollars if
Z € C; . Thegambler is allowed to use any bounded measubajtlas is viewed
as encouraging honesty on the part of the odds-maker. Bets are settled separately,
and then summed. The net payoff to a gambler who uses thggets ., C;} and
the betting function$b; : i =1, ..., k}is

k
Y. 2) =Y bix) [l (x.2) — Q(Cixlx)]. (22)

i=1

Any suchy is called a ‘payoff function’. Clearly,

/W(x, 2)Q(dz|lx) =0 (23)

for all x. Thus, if your predictive distribution foZ — after observing{ = x —is
Q(dz]x), all these payoff functions seem fair.

Definition 1. Dutch bookcan be made against the predictive distributi@/z|x)

if there is a gambling system that provides a uniformly positive expected payoff to
the gambler: in other words, there exists a payoff functionas defined by22) —

and ane > 0 such that

€ 5/ Y(x,z)P(dx,dz|0) forall 6 € ©. (24)

To paraphrase Freedman and Purves (1969),

Imagine a Master of Ceremonies who picks saine ® and then
draws (X, Z) from the modelP(dx, dz|0). The value ofX = x

is revealed and the statistician announces the predictive distribution
Q(dz|x). The gamblerthen lays bets with payoff functibnWhen (24)
holds, the gambler expects to win at leasto matter what the value

of 6.



Of course, if (24) holds for some positiggany other positive can be obtained
by rescaling the payoff function. We will say that dutch book can be made against
Q; more explicitly, dutch book can made against a bookie who — after seeing that
X = x — sets odds o using Q(dz|x). Other language abounds: for instance,
there is a dutch book; or, i is computed from an improper priat, dutch book
can be made against

In this paper, we allow only conditional bets, and obtain resultexpected
loss for a non-Bayesian bookie. De Finetti allowed unconditional bets (Section 1),
and obtained results @ttualloss. For more discussion, see Freedman and Purves
(1969) or Sudderth (1994).

Definition 2. The predictive distributiorQ (dz|x) is strongly inconsisterif there
exists a bounded measurable functipéx, z) and ane > 0 such that

/f(x,z>Q<dz|x>+e < f F(x, 2) P(dx, dz|6) (25)

forall x € X andg € ©.

Equation (8) was a special case, with= X. We now show thaQ (dz|x) is
strongly inconsistent iff dutch book can made agaist

Theorem 2. LetX € X, Z € Z, and{P(dx, dz|0) : 6 € ®} be a measurable
prediction problem. LeQ(dz|x) be a measurable predictive distribution fa@r
whenX = x. ThenQ(dz|x) is strongly inconsistent if and only if dutch book can
be made againsp.

Here is the argument. First, if (24) holds (dutch book), tiién, z) = ¥ (x, z)
is bounded and (25) holds because of (23), proving strong inconsistency. For the
converse, assume (25) holds for some bounded measuyfabide > 0. The left
side of (25) is a function af only; the right side, o only. Thus,

Sup/f(x,z)Q(dzlx) +e€< igf /ff(x, 2)P(dx, dz|0). (26)

Since f is bounded, it can be uniformly approximated by a simple funcgign
and

ffo(x, £)0Wslx) =a < p Sf Jo(x, z) P(dx, dz|0) (27)

for suitable real numbes andgs. The inequality holds for alt € X andf € ©;
using¢ for the variable of integration may be helpful later. Let

f1(x, 2) = fo(x,2) — /z Jo(x, £)Q(d&]x).
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Plainly, f1 is a payoff function in the sense of (22). Now

// fi(x,2)P(dx,dz|0) = B — A,
zJx

where
B :f/ fo(x,2)P(dx,dz|0) > B
zJx

al

//\/f(“cag)Q(d; |x)1 (d.x,dz|8) <// ( X, , |9) <C(,
ZJXJZ ZJX < —

the inequalities hold by (27), establishing the long-sought dutch book, namely,

inequality (24) withe = B—a andy = f1. Thiscompletesthe proof of Theorem 2.
The equivalence of strong inconsistency and dutch book also holds for estima-

tion. To see this, just tak€ = ©, and letZ be the identity map o®. Initially,

P(dx|0) will be defined only onY’; we require some measurable structureson

and setP(A x B|9) = P(A|0)1p(9) for measurabled ¢ X andB C ©. A pre-

dictive distribution is a ‘posterior’ foé given X = x. Quotes are needed unless

Q is computed from a proper prior — but then, there are no paradoxes to discuss.

4. Literature Review

Ramsey (1926) introduced the idea of betting odds as a means of assessing
probability assignments. De Finetti (1931, 1937) used similar ideas in his discus-
sion of what is now commonly known as coherence.

diunindividuo che debba tenere un banco di scommesse su dati eventi,
accettando alle stesse conditizioni qualunque scommessa nell’'uno o
nell’'altro senso. Vedremo che egli é costretto allora a rispettare certe
restrizioni, che sono i teoremi del calcolo delle probabilita. Altrimenti
eglipeccadcoerenzae perdesicuramentgpurche I'avversario sappia
sfruttare il suo errore. De Finetti (1931, p. 305).

In free translation,

A person who is obliged to accept bets in any amount, positive or neg-
ative, on any finite combination of events, must fix prices according to
the laws of probability theory. Otherwise, this person sins against co-
herence and loses money with certainty, provided the opponent knows
how to exploit the mistake.
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Some time afterward, the term ‘dutch book’ entered the lexicon as a synonym for
incoherence. The earliest cite we could find was Lehman (1955), although use of
‘dutch’ as a pejorative dates back to 17th-century England.

Freedman and Purves (1969) gave the dutch-book idea careful mathematical
expression, for prediction and estimation, when all the spaces are finite. Rigorous
treatments in a finitely additive setting for the estimation problem can be found in
Heath and Sudderth (1978, 1989). Extensions to the prediction context appear in
Lane and Sudderth (1984). Heath, Lane, and Sudderth allow infinite spaces.

Another foundational idea, ‘strong inconsistency’, was introduced by Stone
(1976), and later adapted to the predictive setting by Lane and Sudderth (1984);
also see Eaton and Sudderth (1993, 1999). The equivalence of strong inconsis-
tency and incoherence is discussed in the finitely additive setting by Lane and
Sudderth (1983). Proof in the countably additive setting is a little different (Sec-
tion 3). At the risk of the obvious, strong inconsistency is an exact finite-sample
property, rather than an asymptotic large-sample property.

That improper prior distributions can give rise to posterior distributions with
disturbing properties has been known since atleastthe 1970’s. Stone (1976) and the
discussants of Stone’s paper provide examples, including the Jeffreys prior. Eaton
and Sudderth (1993, 1995, 1998, 1999, 2001, 2002) discuss invariant prediction
problems, and show that in the multivariate linear model, fully invariant predic-
tive distributions are strongly inconsistent: the ‘principle of invariance’ (Berger,
1985, p. 390) therefore leads to dutch book. The Jeffreys prior can be viewed as
a prototype where elementary arguments suffice (Section 2). In contrast, much of
the Eaton—Sudderth work relies on separation theorems of the Hahn—Banach type,
which makes the results less accessible. Eaton and Sudderth (1999, Section 8)
show that if the transformation group is amenable, there will be an invariant pre-
dictive distribution immune to dutch book — although other invariant predictive
distributions will be vulnerable. If the transformation group is not amenable — like
the non-singular linear transformations ®fA for p > 1in Sectim 2 — all invariant
predictive distributions may be subject to dutch book (Eaton and Sudderth, 1998).

The uniqueness of the invariant prior in Section 2 above is demonstrated by
Eaton (1983, Example 6.19). Use of this prior has been suggested by Jeffreys
(1961, pp. 180-81), Box and Tiao (1973, p. 426), Box and Tiao (1992, Sec-
tion 8.2.2), Geisser (1993, Chapter 9), Schervish (1995, p. 122), Keyes and Levy
(1996). The latter also has a good survey of invariant predictive distributions in
multivariate analysis of variance. For an interesting generalization of (14), see
Eaton (1983, p. 43). Although incoherence is often a synonym for the possibility
of a dutch book, other definitions have been suggested. See Regazzini (1987) as
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well as Berti, Regazzini, and Rigo (1991). For more discussion, see Sudderth
(1994, Section 7).
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