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Abstract

The “numerical method” in medicine goes back to Pierre Louis’ study of pneumonia (1835),
and John Snow’s book on the epidemiology of cholera (1855). Snow took advantage of natural
experiments and used convergent lines of evidence to demonstrate that cholera is a waterborne
infectious disease. More recently, investigators in the social and life sciences have used statistical
models and significance tests to deduce cause-and-effect relationships from patterns of association;
an early example is Yule’s study on the causes of poverty (1899). In my view, this modeling
enterprise has not been successful. Investigators tend to neglect the difficulties in establishing
causal relations, and the mathematical complexities obscure rather than clarify the assumptions on
which the analysis is based.

Formal statistical inference is, by its nature, conditional. If maintained hypotheses A, B, C
hold, then H can be tested against the data. However, if A, B, C, ... remain in doubt, so must
inferences about H. Careful scrutiny of maintained hypotheses should therefore be a critical part
of empirical work—a principle honored more often in the breach than the observance. Snow’s
work on cholera will be contrasted with modern studies that depend on statistical models and tests
of significance. The examples may help to clarify the limits of current statistical techniques for
making causal inferences from patterns of association.

1. INTRODUCTION

In this paper, | will look at some examples from the history of statistics—examples which help
to define problems of causal inference from non-experimental data. By comparing the successes
with the failures, we may learn something about the causes of both; this is a primitive study design,
but one that has provided useful clues to many investigators since Mill (1843). | will discuss the
classical research of Pierre Louis (1835) on pneumonia, and summarize the work of John Snow
(1855) on cholera. Modern epidemiology has come to rely more heavily on statistical models,
which seem to have spread from the physical to the social sciences and then to epidemiology. The
modeling approach was quite successful in the physical sciences, but has been less so in the other
domains, for reasons that will be suggested in sections 4-7.

Regression models are now widely used to control for the effects of confounding variables, an
early paper being Yule (1899); that is the topic of section 4. Then some contemporary examples will
be mentioned, including studies on asbestos in drinking water (section 5), health effects of elec-
tromagnetic fields, air pollution, the leukemia cluster at Sellafield, and cervical cancer (section 7).
Section 8 discusses one of the great triumphs of the epidemiologic method—identifying the health
effects of smoking. Other points of view on modeling are briefly noted in section 9. Finally, there
is a summary with conclusions.



2. LA METHODE NUMERIQUE

In 1835, Pierre Louis published his classic study on the efficacy of the standard treatments for
pneumoniaRecherches sur les effets de la s&gmians quelques maladies inflammatoires: et sur
I'action de Iengétique et deseasicatoires dans la pneumonieouis was a physician in Paris. In
brief, he concluded that bleeding the patient was a good treatment for pneumonia, although less
effective than commonly thought:

“Que la saigee a une heureuse influence sur la marche de la pneumonie; gu’ellega abr’
la durge; que cependant cette influence est beaucoup moindre qu’'on ne se I'imagine
commuregment. . [p. 62]”

His contemporaries were not all persuaded. According to one, arithmetic should not have been
allowed to constrain the imagination:

“En invoquant I'inflexibilité de I'arithnétique pour se soustraire aux eetginens de
l'imagination, on commet contre le bon sens la plus grave errejyr. 79]”

Pierre Louis was comparing average outcomes for patients bled early or late in the course of the
disease. The critic felt that the groups were different in important respects apart from treatment.
Louis replied that individual differences made itimpossible to learn much from studying individual
cases and necessitated the use of averages; see also Gavarret (1840). This tension has never been
fully resolved, and is with us even today.

A few statistical details may be of interest. Louis reports on 78 pneumonia patients. All were
bled, at different stages of the disease, and 50 survived. Among the survivors, bleeding in the first
two days cut the length of the iliness in half. But, Louis noted, there were differencegime.’

Those treated later had not followed doctors’ orders:

“[ils] avaient commis des erreurs degime, pris des boissons fortes, du vin chaudesucr”

un ou plusieurs jours de suite, en quanptlis ou moins consatable; quelquefois arme

de l'eau-de-vie. [p. 13]”
From a modern perspective, there is a selection effect in Louis’ analysis: those treated later in the
course of an iliness are likely for that reason alone to have had longer ilinesses. It therefore seems
better to consider outcomes for all 78 patients, including those who died, and bleeding in the first
two days doubles the risk of death. Louis saw this, but dismissed it as frightening and absurd on
its face:

“Resultat effrayant, absurde en apparence. [p. 17]"

He explains thatthose who were bled later were older. He was also careful to point out the limitations
created by a small sample.

Among other things, Louis identified two major methodological issues: (i) sampling error and
(ii) confounding. These problems must be addressed in any epidemiologic study. Confounding is
the more serious issue. In brief, a comparison is made between a treatment group and a control
group, in order to determine the effect of treatment. If the groups differ with respect to another
factor—the “confounding variable’—which influences the outcome, the estimated treatment effect
will also include the effect of the confounder, leading to a potentially serious bias. If the treatment
and control groups are chosen at random, bias is minimized. Of course, in epidemiologic studies,
there are many other sources of bias besides confounding. One example is “recall bias,” where a
respondent’s answers to questions about exposure are influenced by presence or absence of disease.
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Another example is “selection bias,” due for instance to systematic differences between subjects

chosen for a study and subjects excluded from the study. Even random measurement error can

create bias in estimated effects: random errors in measuring the size of a causal factor tend to create

a bias toward 0, while errors in measuring a confounder create a bias in the opposite direction.
Pierre Louis’ book was published in the same year as Quet8et'shomme et le eveloppe-

ment de ses facds$, ou Essai de physique social@uetelet, like Louis, has had—and continues

to have—an important influence over the development of our subject (sections 4 and 5).

3. SNOW ON CHOLERA

In 1855, some twenty years before Koch and Pasteur laid the foundations of modern micro-
biology, Snow discovered that cholera is a waterborne infectious disease. At the time, the germ
theory of disease was only one of many conceptions. Imbalance in the humors of the body was
an older explanation for disease. Miasma, or bad air, was often said to be the cause of epidemics.
Poison in the ground was perhaps a slightly later idea.

Snow was a physician in London. By observing the course of the disease, he concluded that
cholera was caused by a living organism, which entered the body with water or food, multiplied
in the body, and made the body expel water containing copies of the organism. The dejecta then
contaminated food or reentered the water supply, and the organism proceeded to infect other victims.
The lag between infection and disease (a matter of hours or days) was explained as the time needed
for the infectious agent to multiply in the body of the victim. This multiplication is characteristic
of life: inanimate poisons do not reproduce themselves.

Snow developed a series of arguments in support of the germ theory. For instance, cholera
spread along the tracks of human commerce. Furthermore, when a ship entered a port where cholera
was prevalent, sailors contracted the disease only when they came into contact with residents of
the port. These facts were easily explained if cholera was an infectious disease, but were harder to
explain by the miasma theory.

There was a cholera epidemic in London in 1848. Snow identified the first or “index” case in
this epidemic:

“a seaman named John Harnold, who had newly arrived bizlibesteamer from Ham-

burgh, where the disease was prevailing. [p. 3]”

He also identified the second case: a man named Blenkinsopp who took Harnold’s room after the
latter died, and presumably became infected by contact with the bedding. Next, Snow was able
to find adjacent apartment buildings, one being heavily affected by cholera and one not. In each
case, the affected building had a contaminated water supply; the other had relatively pure water.
Again, these facts are easy to understand if cholera is an infectious disease, but hard to explain on
the miasma theory.

There was an outbreak of the disease in August and September of 1854. Snow made what is
now called a “spot map,” showing the locations of the victims. These clustered near the Broad Street
pump. (Broad Street is in Soho, London; at the time, there were public pumps used as a source of
water.) However, there were a number of institutions in the area with few or no fatalities. One was
a brewery. The workers seemed to have preferred ale to water: but if any wanted water, there was a
private pump on the premises. Another institution almost free of cholera was a poor-house, which
too had its own private pump. People in other areas of London contracted the disease; but in most
cases, Snow was able to show they drank water from the Broad Street pump. For instance, one
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lady in Hampstead so much liked its taste that she had bottled water from the Broad Street pump
delivered to her house by carter.

So far, we have persuasive anecdotal evidence that cholera is an infectious disease, spread by
contact or through the water supply. Snow also used statistical ideas. There were a number of water
companies in the London of his time. Some took their water from heavily contaminated stretches
of the Thames river; for others, the intake was relatively uncontaminated. Snow made what are now
called “ecological” studies, correlating death rates from cholera in various areas of London with
the quality of the water. Generally speaking, areas with contaminated water had higher death rates.
One exception was the Chelsea water company. This company started with contaminated water, but
had quite modern methods of purification—settling ponds, exposure to sunlight, and sand filtration.
Its service area had a low death rate from cholera.

In 1852, the Lambeth water company moved its intake pipe upstream to secure relatively
pure water. The Southwark and Vauxhall company left its intake pipe where it was, in a heavily
contaminated stretch ofthe Thames. Snow made an ecological analysis comparing the areas serviced
by the two companies in the epidemics of 1853-54 and in earlier years. Let him now continue in
his own words.

“Although the facts shown in the above table [the ecological analysis] afford very strong
evidence of the powerful influence which the drinking of water containing the sewage of a town
exerts over the spread of cholera, when that disease is present, yet the question does not end here;
for the intermixing of the water supply of the Southwark and Vauxhall Company with that of the
Lambeth Company, over an extensive part of London, admitted of the subject being sifted in such
a way as to yield the most incontrovertible proof on one side or the other. In the subdistricts
enumerated in the above table as being supplied by both Companies, the mixing of the supply is of
the most intimate kind. The pipes of each Company go down all the streets, and into nearly all the
courts and alleys. A few houses are supplied by one Company and a few by the other, according
to the decision of the owner or occupier at that time when the Water Companies were in active
competition. In many cases a single house has a supply different from that on either side. Each
company supplies both rich and poor, both large houses and small; there is no difference either in
the condition or occupation of the persons receiving the water of the different Companies. Now
it must be evident that, if the diminution of cholera, in the districts partly supplied with improved
water, depended on this supply, the houses receiving it would be the houses enjoying the whole
benefit of the diminution of the malady, whilst the houses supplied with the [contaminated] water
from Battersea Fields would suffer the same mortality as they would if the improved supply did
not exist at all. As there is no difference whatever in the houses or the people receiving the supply
of the two Water Companies, or in any of the physical conditions with which they are surrounded,
it is obvious that no experiment could have been devised which would more thoroughly test the
effect of water supply on the progress of cholera than this, which circumstances placed ready made
before the observer.

“The experiment, too, was on the grandest scale. No fewer than three hundred thousand people
of both sexes, of every age and occupation, and of every rank and station, from gentlefolks down
to the very poor, were divided into groups without their choice, and in most cases, without their
knowledge; one group being supplied with water containing the sewage of London, and amongst
it, whatever might have come from the cholera patients; the other group having water quite free
from such impurity.



“To turn this grand experiment to account, all that was required was to learn the supply of
water to each individual house where a fatal attack of cholera might occur. [pp. 74-75.]"

Snow’s data are shown in Table 1. The denominator data—the number of houses served by
each water company—were available from parliamentary records. For the numerator data, however,
a house-to-house canvass was needed to determine the source of the water supply at the address of
each cholera fatality. (The “bills of mortality” showed the address, but not the water source.) The
death rate from the Southwark and Vauxhall water is about 9 times the death rate for the Lambeth
water. This is compelling evidence.

Snow argued that the data could be analyzed as if they had resulted from an experiment of
nature: there was no difference between the customers of the two water companies, except for the
water. His sample was not only large but representative; therefore, it was possible to generalize to
a larger population. Finally, Snow was careful to avoid the “ecological fallacy:” relationships that
hold for groups may not hold for individuals (Robinson, 1950). Itis the design of the study and the
magnitude of the effect that compel conviction, not the elaboration of technique.

TABLE 1. Death rate from cholera by source of water. Rate per 10,000 houses. London,
epidemic of 1853-54. Snow’s Table IX.

No. of Houses  Cholera Deaths Rate per 10,000

Southwark & Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59

More evidence was to come from other countries. In New York, the epidemics of 1832 and
1849 were handled according to the theories of the time. The population was exhorted to temperance
and calm, since anger could increase the humor “choler” (bile), and imbalances in the humors of
the body lead to disease. Pure water was brought in to wash the streets and reduce miasmas. In
1866, however, the epidemic was handled by a different method—rigorous isolation of cholera
cases, with disinfection of their dejecta by lime or fire. The fatality rate was much reduced.

At the end of the 19th century, there was a burst of activity in microbiology. In 1878, Pasteur
publishedLa théorie des germes et ses applicati@nk& médecine et la chirurgie. Around that
time, Pasteur and Koch isolated the anthrax bacillus and developed techniques for vaccination. The
tuberculosis bacillus was next. In 1883, there was a cholera epidemic in Egypt, and Koch isolated
the vibrio; he was perhaps anticipated by Filipo Pacini. There was an epidemic in Hamburg in 1892.
The city fathers turned to Max von Pettenkofer, a leading figure in the German hygiene movement
of the time. He did not believe Snow’s theory, holding instead that cholera was caused by poison
in the ground. Hamburg was a center of the slaughterhouse industry, and von Pettenkofer had the
carcasses of dead animals dug up and hauled away, in order to reduce pollution of the ground. The
epidemic continued its ravages, which ended only when the city lost faith in von Pettenkofer and
turned in desperation to Koch.

The approach developed by Louis and Snow found many applications; | will mention only two
examples. Semmelweiss (1867) discovered the cause of puerperal fever. Around 1914, Goldberger
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showed that pellagra was the result of a diet deficiency. Terris (1964) reprints many of Goldberger’s
articles; also see Carpenter (1981). A useful reference on Pasteur is Dubos (1988). References on
the history of cholera include Rosenberg (1962), Howard-Jones (1975), Evans (1987), Winkelstein
(1995), Paneth et al. (1998). Today, the molecular biology of the cholera vibrio is reasonably
well understood; see, for instance, Finlay, Heffron, and Fialkow (1989) or Miller, Mekalanos, and
Fialkow (1989). For a synopsis, see Alberts et al. (1994, pp. 484, 738); there are recent surveys by
Colwell (1996) and Raufman (1998). Problems with ecological inference are discussed in Freedman
(2001).

4. REGRESSION MODELS IN SOCIAL SCIENCE

Legendre (1805) and Gauss (1809) developed the regression method (least absolute residuals or
least squares) to fit data on the orbits of astronomical objects. In this context, the relevant variables
are known and so are the functional forms of the equations connecting them. Measurement can be
done to high precision, and much is known about the nature of the errors—in the measurements
and the equations. Furthermore, there is ample opportunity for comparing predictions to reality.

By the turn of the century, investigators were using regression on social science data where
these conditions did not hold, even to a rough approximation. One of the earliest such papers is
Yule (1899), “An investigation into the causes of changes in pauperism in England, chiefly during
the last two intercensal decades.” At the time, paupers were supported either inside “poor-houses”
or outside, depending on the policy of local authorities. Did the relief policy affect the number of
paupers? To study this question, Yule offered a regression equation,

APaup=a + b x AOut+ ¢ x AOId+ d x APop+ error.

In this equation,

A is percentage change over time,
“Out” is the out-relief ratioN /D,
N = number on welfare outside the poor-house,
D = number inside,
“Old” is the percentage of the population over 65,
“Pop” is the population.

Data are from the English Censuses of 1871, 1881, 1891. There are'swane for 1871-81 and
one for 1881-91.

Relief policy was determined separately by the local authorities in each “union,” a small
geographical area like a parish. At the time, there were about 600 unions, and Yule divided them
into four kinds: rural, mixed, urban, metropolitan. There are 2 = 8 equations, one for each
combination of time period and type of union. Yule assumed that the coefficients were constant for
each equation, which he fitted to the data by least squares. That is, he estimated the coefficients
b, ¢, andd as the values that minimized the sum of squared errors,

Y (APaup—a — b x AOUt— ¢ x AOId —d x APop”.

The sum is taken over all unions of a given type at a given time-period.
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For example, consider the metropolitan unions. Fitting the equation to the data for 1871-81
gave

APaup= 1319+ 0.755A0ut— 0.022A0Id — 0.322APop+ residual

For 1881-91, Yule's equation was
APaup= 1.36+ 0.324A0ut+ 1.37A0Id — 0.369APop+ residual

The framework combines the ideas of Quetelet with the mathematics of Gauss. Yule is studying
the “social physics” of poverty. Nature has run an experiment, assigning different treatments to
different areas. Yule is analyzing the results, using regression to isolate the effects of out-relief.
His principal conclusion is that welfare outside the poor-house creates paupers—the estimated
coefficient on the out-relief ratio is positive.

At this remove, the flaws in the argument are clear. Confounding is a salient problem. For
instance, Pigou (a famous economist of the era) thought that unions with more efficient adminis-
trations were the ones building poor-houses and reducing poverty. Efficiency of administration is
then a confounder, influencing both the presumed cause and its effect. Economics may be another
confounder. At times, Yule seems to be using the rate of population change as a proxy for eco-
nomic growth, although this is not entirely convincing. Generally, however, he pays little attention
to economic activity. The explanation: “A good deal of time and labour was spent in making
trial of this idea, but the results proved unsatisfactory, and finally the measure was abandoned
altogether. [p. 253]”

The form of his equation is somewhat arbitrary, and the coefficients are not consistent over time
and space. This is not necessarily fatal. However, if the coefficients do not exist separately from the
data, how can they predict the results of interventions? There are also problems of interpretation. At
best, Yule has established association. Conditional on the covariates, there is a positive association
betweemAPaup and\Out. Is this association causal? If so, which way do the causal arrows point?
These questions are not answered by the data analysis; rather, the answers are assumed a priori. Yule
is quite concerned to parcel out changes in pauperism: so much is due to changes in the out-relief
ratio, so much to changes in other variables, and so much to random effects. However, there is one
deft footnote (humber 25) that withdraws all causal claims:

“Strictly speaking, for ‘due to’ read ‘associated with.”

FIGURE 1. Yule’'s Model. Metropolitan Unions, 1871-81.

AOut A Pop AOld
*k*% *k*%
A Paup

Yule’s approach is strikingly modern, except there is no causal diagram and no stars indicating
statistical significance. Figure 1 brings him up to date. An arrow fPono Y indicates thatX
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is included in the regression equation that explainsStatistical significance” is indicated by an
asterisk, and three asterisks signal a high degree of significance. The idea is that a statistically
significant coefficient differs from 0, so thaf has a causal influence dn. By contrast, an
insignificant coefficient is zero: theXi does not exert a causal influencelon

The reasoning is seldom made explicit, and difficulties are frequently overlooked. Stringent
assumptions are needed to determine significance from the data. Even if significance can be deter-
mined and the null hypothesis rejected or accepted, there is a much deeper problem. To make causal
inferences, it must in essence be assumed that equations are invariant under proposed interventions.
Verifying such assumptions—without making the interventions—is quite problematic. On the other
hand, if the coefficients and error terms change when the right hand side variables are manipulated
rather than being passively observed, then the equation has only a limited utility for predicting the
results of interventions. These difficulties are well known in principle, but are seldom dealt with
by investigators doing applied work in the social and life sciences. Despite the problems, and the
disclaimer in the footnote, Yule’s regression approach has become widely used in the social sciences
and epidemiology.

Some formal models for causation are available, starting with Neyman (1923). See Hodges
and Lehmann (1964, sec. 9.4), Rubin (1974), or Holland (1988). More recent developments will
be found in Pearl (1995, 2000) or Angrist, Imbens and Rubin (1996). For critical discussion from
various perspectives, see Goldthorpe (1998, 2001), Humphreys and Freedman (1996, 1999), Abbott
(1997), McKim and Turner (1997), Manski (1995), Lieberson (1985), Lucas (1976), Liu (1960), or
Freedman (1987, 1991, 1995). Bhrolchdin (2001) presents some fascinating case studies. The
role of invariance is considered in Heckman (2000) and Freedman (2002). The history is reviewed
by Stigler (1986) and Desrasies (1993).

5. REGRESSION MODELS IN EPIDEMIOLOGY

Regression models (and variations like the Cox model) are widely used in epidemiology.
The models seem to give answers, and create at least the appearance of methodological rigor.
This section discusses one example, which is fairly typical of such applications and provides an
interesting contrast to Snow on cholera. Snow used primitive statistical techniques, but his study
designs were extraordinarily well thought out, and he made a huge effort to collect the relevant data.
By contrast, many empirical papers published today, even in the leading journals, lack a sharply-
focused research question; or the study design connects the hypotheses to the data collection only in
averyloose way. Investigators often try to use statistical models not only to control for confounding,
but also to correct basic deficiencies in the design or the data. Our example will illustrate some of
these points.

Kanarek et al. (1980) asked whether asbestos in the drinking water causes cancer. They
studied 722 census tracts in the San Francisco Bay Area. (A census tract is a small geographical
region, with several thousand inhabitants.) The investigators measured asbestos concentration in
the water for each tract. Perhaps surprisingly, there is enormous variation; less surprisingly, higher
concentrations are found in poorer tracts. Kanarek et al. compared the “observed” number of cancers
by site with the expected number, by sex, race, and tract. The “expected” number is obtained by
applying age-specific national rates to the population of the tract, age-group by age-group; males
and females are done separately, and only whites are considered. (There are about 100 sites for
which age-specific national data are available; comparison of observed to expected numbers is an
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example of “indirect standardization.”)
Regression is used to adjust for income, education, marital status, and occupational exposure.
The equation is not specified in great detail, but is of the form

Obs . . .
log % = Ag + Aj asbestos concentratian Ao income+ Az education

+ Az married+ As asbestos workers error.

Here, “income” is the median figure for persons in the tract, and “education” is the median number
of years of schooling; data are available from the census. These variables adjust to some extent
for socio-economic differences between tracts: usually, rates of disease go down as income and
education go up. The next variable in the equation is the fraction of persons in the tract who are
married; such persons are typically less subject to disease than the unmarried. Finally, there is the
number of “asbestos workers” in the tract; these persons may have unusually high rates of cancer,
due to exposure on the job. Thus, the variables on the right hand side of the equation are potential
confounders, and the equation tries to adjust for their effects. The estimatdaflung cancerin

males is “highly statistically significant,” wit® < .001. A highly significant coefficient like this

might be taken as strong evidence of causation, but there are serious difficulties.

Confounding. No adjustment is made for smoking habit, which was not measured in this
study. Smoking is strongly but imperfectly associated with socio-economic status, and hence with
asbestos concentration in the water. Furthermore, smoking has a substantial effect on cancer rates.
Thus, smoking is a confounder. The equation does not correct for the effects of smoking, and the
P-value does not take this confounding into account.

FIGURE 2. Smoking as an unmeasured confounder. The non-causal association between
asbestos in the water and lung cancer is explained by the associations with smoking.

Confounding by Smoking

Smoking
(Unmeasured)
[ J [ J
Asbestos Lung
in Water Cancer

Figure 2 illustrates an alternative explanation for the data. (i) Smoking (an unmeasured con-
founder) is associated with the concentration of asbestos fibers in the water. The association is
signaled by the straight line joining the two variables. (ii)) Smoking has a strong, direct effect on
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lung cancer, indicated by the arrow in the figure. Associations (i) and (ii) explain the associa-
tion between asbestos fibers in the water and lung cancer rates; this observed association is not
causal. To recapitulate, a confounder is associated with the putative cause and with its effect; the
confounder may explain part or all of an observed association. In epidemiology, unmeasured or
poorly measured confounders are the rule rather than the exception. (Technically, the relationships
in Figure 2 must persist even after conditioning on the measured covariates.)

Model specification.The choice of variables and functional form is somewhat arbitrary, al-
though not completely unreasonable. The authors say that their equation is suggested by mathemat-
ical models for cancer, but the connection is rather loose; nor have the cancer models themselves
been validated (Freedman and Navidi, 1989, 1990).

Statistical assumptionsTo compute theP-value, it is tacitly assumed that errors are sta-
tistically independent from tract to tract, and identically distributed. This assumption may be
convenient, but it lacks an empirical basis.

The search for significanc&ven if we set the fundamental difficulties aside, the authors have
made several hundred tests on the equations they report, without counting any preliminary data
analysis that may have been done. TPwalues are not adjusted for the effects of the search,
which may be substantial (Dijkstra, 1988; Freedman, 1983).

Weak effectsThe effect being studied is weak: a 100-fold increase in asbestos fiber concen-
tration is associated with perhaps a 5% increase in lung cancer rates. What is unusual about the
present example is only the strength of the unmeasured confounder, and the weakness of the effect
under investigation.

Epidemiology is best suited to the investigation of strong effects, which are hard to explain
away by confounding (Cornfield et al., 1959, p. 199). As attention shifts to the weaker and less
consistent effects that may be associated with low doses, difficulties will increase. Long delays
between the beginning of exposure and the onset of disease are a further complication. Toxicology
may be of some value but presents difficulties of its own (Freedman, Gold, and Lin, 1996; Freedman
and Zeisel, 1988). The limitations of epidemiology are discussed by Taubes (1995). For detailed
case studies, see Vandenbroucke and Pardoel (1989), Taubes (1998), or Freedman and Petitti (2001).
Other examples will be given in section 7.

6. SOME GENERAL CONSIDERATIONS

Model specificationA model is specified by choosing (i) the explanatory variables to put on
the right hand side, (ii) the functional form of the equation, and (iii) the assumptions about error
terms. Explanatory variables are also called “covariates,” or “independent variables”; the latter
term does not connote statistical independence. The functional form may be linear, or log linear, or
something even more exotic. Errors may be assumed independent or autoregressive; or some other
low-order covariance matrix may be assumed, with a few parameters to estimate from the data.
Epidemiologists often have binary response variables: for instance, disease is coded as “1”
and health as “0.” A “logit” specification is common in such circumstances. Conditional on the
covariates, subjects are assumed to be independdntisithe response for subjectvhile X; is a
1 x p vector of covariates, the logit specification is

Proy; =1}

Proby; = 0} Xip.
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Here, is a p x 1 vector of parameters, which would be estimated from the data by maximum
likelihood. For useful details on various models and estimation procedures, see Breslow and Day
(1980, 1987).

Models are chosen on the basis of familiarity and convenience; there will be some effort made
to avoid gross conflict with the data. Choices are generally somewhat arbitrary, although they may
not be unreasonable. There will often be some preliminary data analysis: forinstance, variables with
insignificant coefficients are discarded, and the model refitted. Details can make a large difference
in conclusions. In particula®?-values are often strongly dependent on the final specification, and
the preliminary screening may make thés&alues difficult to interpret—as discussed below.

It is sometimes argued that biases (like recall bias or selection bias) can be modeled and then
corrections can be made. That might be so if the auxiliary models could themselves be validated. On
the other hand, if the auxiliary models are of doubtful validity, the “corrections” they suggest may
make matters worse rather than better. For more discussion, see Scharfstein, Rotnitzky and Robins
(1999) or Copas and Li (1997). In the original physical-science applications, the specifications were
dictated by prior theory and empirical fact (section 4). In the social sciences and epidemiology,
the specifications are much more arbitrary. That is a critical distinction, as discussed in Freedman
(2002).

A review of P-valueslt may be enough to consider one typical example. Suppbsea
random variable, distributed as(u, 1), SO

1 X
ProbfX —u < x} = ®(x) = \/T_JT/ e du.
—00

The “null hypothesis” is that = 0; the “alternative” is thage # 0. The “test statistic” i§X]|.
Large values of the test statistic are evidence against the null hypothesis. For instance, a value of 2.5
for | X| would be quite unusual—if the null hypothesis is correct. Such large values are therefore
evidence against the null.

If x is the “observed value” ok, that is, the value realized in the data, then thealue of
the testisb(—|x|) + 1 — ®(|x|). In other words P is the chance of getting a test statistic as large
as or larger than the observed one; this chance is computed on the basis of the null hypothesis.
(SometimespP is called the “observed significance level.”) If the null hypothesis is correct, then
P has a uniform distribution. Otherwis@, is more concentrated near 0. Thus, small valueB of
argue against the null hypothesis. Af < .05, the result is “statistically significant”; i < .01,
the result is “highly significant.” These distinctions are somewhat arbitrary, but have a powerful
influence on the way statistical studies are received. In this exaXipgean unbiased estimate of
w. If X were biased, the bias would have to be estimated from some other data, and removed from
X before proceeding with the tesP. is about sampling error, not bias.

The search for significanc@he effect of multiple comparisons can be seen in our example. A
value of 2.5 for X | is unusual. However, if 1000 independent copieX afre examined, values of
2.5 or larger are to be expected. If only the large values are noticed and the search effort is ignored
when computingP, severe distortion can result. Disease clusters attributed to environmental
pollution may present such analytical problems. There are many groups of people, many sources
of pollution, many possible routes of exposure, and many possible health effects. Great care is
needed to distinguish real effects from the effects of chance. The search effort may not be apparent,
because a cluster—especially of a rare disease—can be quite salient.
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The difficulty is not widely appreciated, so another example may be useful. A coin that lands
heads 10 times in a row is unusual. On the other hand, if a coin is tossed 1000 times and there is at
least one run of 10 heads, that is only to be expected. The latter model may be more relevant for a
disease cluster, given the number of possibilities open to examination.

If adjustment for confounding is done by regression and various specifications are tried, chance
capitalization again comes into play. For some empirical evidence, see Ottenbacher (1998) or Dick-
ersin (1997). Many epidemiologists deny that problems are created by the search for significance.
Some commentators are more concerned with loss of power than distortion®etéiee, because
they are convinced a priori that the null hypothesis is untenable. Of course, it is then unclear why
statistical testing an@ are relevant. See, for instance, Rothman (1990) or Perneger (1998). On
the other hand, Rothman’s preference for estimation over testing in the epidemiologic context often
seems justified, especially when there is an effect to be estimated. For more discussion, see Cox
(1977, section 5), or Freedman, Pisani, and Purves (1997, chapter 29); also see section 9 below.

Intermediate variableslf X andY causeZ, but X also cause¥, the variableY would often
be treated as an “intermediate variable” along the pathway #am Z, rather than a confounder.
If the object is to estimate the total effect ¥fon Z, then controlling forY is usually not advised.
If the idea to estimate the direct effect Hfon Z, then controlling forY may be advised, but the
matter can under some circumstances be quite delicate. See Greenland, Pearl, and Robins (1999).

7. OTHER EXAMPLES IN EPIDEMIOLOGY

This section provides more examples in epidemiology. Generally, the studies mentioned are
unpersuasive, for one or more of the following reasons.

Effects are weak and inconsistent.

Endpoints are poorly defined.

There is an extensive search for statistical significance.
Important confounders are ignored.

When effects are weak or inconsistent, chance capitalization and confounding are persistent issues;
poorly-defined endpoints lend themselves to a search for significance. These problems are particu-
larly acute when studying clusters. However, the section ends on a somewhat positive note. After
numerous false starts, epidemiology and molecular biology have identified the probable etiologic
agent in cervical cancer.

Leukemias and sarcomas associated with exposure to electromagnetic Mads.studies

find a weak correlation between exposure to electromagnetic fields and a carcinogenic response.
However, different studies find different responses in terms of tissue affected. Nor is there much
consistency in measurement of dose, which would in any event be quite difficult. Some investigators
try to measure dose directly, some use distance from power lines, some use “wire codes,” which are
summary measures of distance from transmission lines of different types. Some consider exposure
to household appliances like electric blankets or microwave ovens, while some do not. The National
Research Council (1997) reviewed the studies and concluded there was little evidence for a causal
effect. However, those who believe in the effect continue to press their case.

Air pollution. Some investigators find an effect of air pollution on mortality rates: see Pope,
Schwartz, and Ransom (1992). Styer et al. (1995) use similar data and a similar modeling strategy,

12



but find weak or inconsistent effects; also see Gamble (1998). Estimates of risk may be determined
largely by unverifiable modeling assumptions rather than data, although conventional opinion now
finds small particles to be hazardous.

Sellafield.There was a leukemia cluster associated with the British nuclear facility at Sellafield.
Fathers working in the facility were exposed to radiation, which was said to have damaged the
sperm and caused cancer in the child after conception—the “paternal preconception irradiation”
hypothesis. Two of the Sellafield leukemia victims filed suit. There was a trial with discovery and
cross examination of expert witnesses, which gives a special perspective on the epidemiology. As
it turned out, the leukemia cluster had been discovered by reporters. The nature and intensity of
the search is unknowr®-values were not adjusted for multiple comparisons. The effects of news
stories on subsequent responses to medical interviews must also be a concern. The epidemiologists
who investigated the cluster used a case-control design, but changed the definitions of cases and
controls part way through the study. For such reasons among others, causation does not seem to
have been demonstrated. The judge found that

“the scalesttilt decisively in favour of the defendants and the plaintiffs therefore have failed
to satisfy me on the balance of probabilities that [paternal preconception irradiation] was
a material contributory cause of the [Sellafield] excesg[p. 209]”

The cases are Reay and Hope v. British Nuclear Fuels, 1990 R No 860, 1989 H No 3689. Sellafield
is also referred to as Seascale or Windscale in the opinion, written by the Hon. Mr. Justice French
of the Queen’s Bench. The epidemiology is reported by Gardner et al. (1990) and Gardner (1992);
also see Doll, Evans, and Darby (1994). Case-control studies will be discussed again in the next
section. Chance capitalization is not a fully satisfactory explanation for the Sellafield excess. Some
epidemiologists think that leukemia clusters around nuclear plants may be a real effect, caused by
exposure of previously isolated populations to viruses carried by immigrants from major population
centers; this hypothesis was first put forward in another context by Kinlen and John (1994).

Cervical cancer. This cancer has been studied for many years. Some investigators have
identified the cause as tissue irritation; others point to syphilis, or herpes, or chlamydia; still
others have found circumcision of the husband to be protective. See Gagnon (1950), Rgjel (1953),
Aurelian et al. (1973), Hakama et al. (1993), or Wynder et al. (1954). Today, it is believed that
cervical cancerisin large part a sexually transmitted disease, the agent being certain types of human
papillomavirus, or HPV. There is suggestive evidence for this proposition from epidemiology and
from clinical practice, as well as quite strong evidence from molecular biology. If so, the earlier
investigators were misled by confounding. For example, the women with herpes were presumably
more active sexually, and more likely to be exposed to HPV. The two exposures are associated, but
it is HPV that is causal. For reviews, see Storey et al. (1998) or Cannistra and Niloff (1996). The
history is discussed by Evans (1993, pp. 101-105); some of the papers are reprinted by Buck et
al. (1989).

8. HEALTH EFFECTS OF SMOKING

In the 1920s, physicians noticed a rapid increase of death rates from lung cancer. For many
years, it was debated whether the increase was real or an artifact of improvement in diagnostics.
(The lungs are inaccessible, and diagnosis is not easy.) By the 1940s, there was some agreement
on the reality of the increase, and the focus of the discussion shifted. What was the cause of the
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epidemic? Smoking was one theory. However, other experts thought that emissions from gas works
were the cause. Still others believed that fumes from the tarring of roads were responsible.

Two early papers on smoking and lung cancer were Lombard and Doering (1928)uéied M~
(1939). Later papers attracted more attention, especially Wynder and Graham (1950) in the US and
Doll and Hill (1950, 1952) in the UK. I will focus on the last, which reports on a “hospital-based
case-control study.” Cases were patients admitted to certain hospitals with a diagnosis of lung
cancer; the controls were patients admitted for other reasons. Patients were interviewed about their
exposure to cigarettes, emissions from gas works, fumes from tarring of the roads, and various other
possible etiologic agents. Interviewing was done “blind,” by persons unaware of the purpose of the
study. The cases and controls turned out to have rather similar exposures to suspect agents—except
for smoking. Data on that exposure are shown in Table 2.

TABLE 2. Hospital-based case-control study. Smoking status for cases and controls.
Doll and Hill (1952).

Cases Controls

Smoker 1350 1296
Nonsmoker 7 61

There were 1357 cases in the study, of whom 1350 were smokers; there were 1357 controls,
of whom 1296 were smokers. In both groups, non-smokers are rare; but they are much rarer among
the controls. To summarize such data, epidemiologists use the “odds ratio,”

13507 _
1296/61

Roughly speaking, lung cancer is 9 times more common among smokers than among non-smokers.

(Doll and Hill matched their cases and controls, a subtlety that will be ignored here.) Interestingly

enough, there some cases where the diagnosis of lung cancer turned out to be wrong; these cases

smoked at the same rate as the controls—an unexpected test confirming the smoking hypothesis.
The odds ratio is a useful descriptive statistic on its own. However, there is a conventional way

of doing statistical inference in this setting, which leads to confidence intervalB-aatlies. The

basic assumption is that the cases are a random sample from the population of lung cancer cases,

while the controls are a random sample (with a different sampling fraction) from the part of the

population that is free of the disease. The odds ratio in the data would then estimate the odds ratio

in the population.

TABLE 3. A 2 x 2 table for the population, classified according to presence or absence
of lung cancer and smoking habit:is the number of smokers with lung canders the
number of smokers free of the disease, and so forth.

Lung cancer  No lung cancer

Smoker a b
Nonsmoker c d
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More explicitly, the population can be classified in &2 table, as in Table 3, wheteis
the number who smoke and have lung canéag the number who smoke but do not have lung
cancer; similarly forc andd. Suppose the lung cancer patients in hospital are sampled at the rate
¢ from the corresponding part of the population, while the controls are sampled at thjiefrata
the remainder of the population. With a large number of patients, the odds ratio in the study is
essentially the same as the odds ratio in the population (Cornfield, 1951), because

($a)/(ge) _ ajc
Wb)/(Wd) ~ bjd

Since lung cancer is a rare disease even among smakeérsy a/(a + b) approximates the
rate of disease among smokers, whild ~ c¢/(c + d) approximates the rate among nonsmokers,
and the odds ratio nearly coincides with the rate ratio. Moreover, standard errors and the like can
be computed on the basis of the sampling model. For details, see Breslow and Day (1980).

The realism of the model, of course, is open to serious doubt: patients are not hospitalized at
random. This limits the usefulness of confidence intervalsfavdlues. Scientifically, the strength
of the case against smoking rests not so much orPtivalues, but more on the size of the effect,
its coherence, and on extensive replication both with the original research design and with many
other designs. Replication guards against chance capitalization and, at least to some extent, against
confounding—if there is some variation in study design (Cornfield et al., 1959; Ehrenberg and
Bound, 1993).

The epidemiologists took full advantage of replication. For instance, Doll and Hill (1954)
began a “cohort study,” where British doctors were followed over time and mortality rates were
studied in relation to smoking habit. At this point, it became clear that the smokers were dying at
much faster rates than the non-smokers, not only from lung cancer but from many other diseases,
notably coronary heart disease. It also became clear that the odds ratio computed from Table 2
was biased downward, because patients in a hospital are more likely to be smokers than the general
population.

Coherence of study results is also important part of the case. (i) There is a dose-response
relationship: persons who smoke more heavily have greater risks of disease than those who smoke
less. (ii) The risk from smoking increases with the duration of exposure. (iii) Among those who
quit smoking, excess risk decreases after exposure stops. These considerations are systematized to
some degree by “Hill's postulates:” see Evans (1993, pp. 186ff). Of course, the data are not free of
all difficulties. Notably, inhalation increases the risk of lung cancer only in some of the studies.

There was resistance to the idea that cigarettes could kill. The list of critics was formidable,
including Berkson (1955) and Fisher (1959); for a summary of Fisher’'s arguments, see Cook (1980).
The epidemiologists made an enormous effort to answer criticisms and to control for possible
confounders that were suggested. To take only one example, Fisher advanced the “constitutional
hypothesis” that there was a genetic predisposition to smoke and to have lung cancer: genotype isthe
confounder. If so, there is no point in giving up cigarettes, because the risk comes from the genes
not the smoke. To refute Fisher, the epidemiologists studied monozygotic twins. The practical
difficulties are considerable, because we need twin pairs where one smokes and the other does not;
furthermore, at least one of the twins must have died from the disease of interest. Monozygotic
twins are scarce, smoking-discordant twin pairs scarcer yet. And lung cancer is a very rare disease,
even among heavy smokers.

15



Data from the Finnish twin study (Kaprio and Koskenvuo, 1989) are shown in Table 4. There
were 22 smoking-discordant monozygotic twin pairs where at least one twin died. In 17 out of 22
cases, the smoker died first. Likewise, there were 9 cases where at least one twin in the pair died of
coronary heart disease. In each case, the smoker won the race to death. For all-cause mortality or
coronary heart disease, the constitutional hypothesis no longer seems viable. For lung cancer, the
numbers are tiny. Of course, other studies could be brought into play (Carmelli and Page, 1996).
The epidemiologists refuted Fisher by designing appropriate studies and collecting the relevant
data, not by a priori arguments and modeling. For other views, see Bross (1960) or Stolley (1991).

TABLE 4. The Finnish twin study. First death by smoking status among smoking-
discordant twin pairs. Kaprio and Koskenvuo (1989).

Smokers  Non-smokers

All causes 17 5
Coronary heart disease 9 0
Lung cancer 2 0

Figure 3 shows current data from the US, with age-standardized death rates for the six most
common cancers among males. Cancer is a disease of old age and the population has been getting
steadily older, so standardization is essential. In brief, 1970 was chosen as a reference population.
To get the standardized rates, death rates for each kind of cancer and each age group in each year
are applied to the reference population. Mathematically, the standardized death rate from cancer of

type j inyeart is
> nmidije) Y ni,
i i

wheren; is the number of men in age groupn the 1970 population, and;; is the death rate
from cancer of typg among men in age groupn the population corresponding to yeaiThat is
“direct standardization.”

As will be seen, over the period 1930-1980, there is a spectacular increase in lung cancer
rates. This seems to have followed by about 20 or 25 years the increase in cigarette smoking. The
death rate from lung cancer starts turning down in the late 1980s, because cigarette smoking began
to decrease in the late 1960s. Women started smoking later than men, and continued longer: their
graph (not shown) is lower, and still rising. The data on US cigarette consumption are perhaps not
quite as solid as one might like; for English data, which tell a very similar story, see Doll (1987)
and Wald and Nicolaides-Bouman (1991). The initial segment of the lung cancer curve in Figure 3
was one of the first clues in the epidemiology of smoking. The downturn in the 1980s is one of the
final arguments on the smoking hypothesis.

The strength of the case rests on the size and coherence of the effects, the design of the
underlying epidemiologic studies, and on replication in many contexts. Great care was taken to
exclude alternative explanations for the findings. Even so, the argumentrequires acomplexinterplay
among many lines of evidence. Regression models are peripheral to the enterprise. Cornfield et
al. (1959) provides an interesting review of the evidence in its early stages. A summary of more
recent evidence will be found in IARC (1986). Gail (1996) discusses the history.
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FIGURE 3. Age-Standardized Cancer Death Rates for Males, 1930-94. Per 100,000.
US Vital Statistics.
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Notes: Reprinted by the permission of the American Cancer Society, Inc. Figure is redrawn from
American Cancer Society (1997), using data kindly provided by the ACS. According to the ACS, “Due

to changes in ICD coding, numerator information has changed over time. Rates for cancers of the liver,
lung, and colon and rectum are affected by these coding changes. Denominator information for the years
1930-1959 and 1991-1993 is based on intercensal population estimates, while denominator information
for the years 1960—1989 is based on postcensal recalculation of estimates. Rate estimates for 1968—1989
are most likely of better quality.”

9. OTHER VIEWS

According to my near-namesake Friedman (1953, p. 15), “the relevant question to ask about the
‘assumptions’ of a theory is not whether they are descriptively ‘realistic,’ for they never are, but
whether the theory works, which means whether it yields sufficiently accurate predictions.” This
argument is often used by proponents of modeling. However, the central question has been begged:
how do we know whether the model is making good predictions? Fitting an equation to an existing
data set is one activity; predicting the results of an intervention is quite another, and the crucial
issue is getting from here to there. If regression models were generally successful in making causal
inferences from associational data, that would be compelling evidence. In my experience, however,
those who deploy Friedman’s argument are seldom willing to engage in detailed discussions of the
track record. Their reluctance is understandable.

Bross (1960, p. 394) writes, “a critic who objects to a bias in the design [of a study] or a
failure to control some established factor is, in fact, raising a counterhypothes[and] has the
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responsibility for showing that his counterhypothesis is tenable. In doing so, he operates under
the same ground rules as [the] proponent.” Also see Blau and Duncan (1967, p. 175). There is
some merit to this point. Critics, like others, have an obligation to be reasonable. However, the

argument is often used to shift the burden of proof from the proponent of a theory to the critic. That

is perverse. Snow and his peers sought to carry the burden of proof, not to shift it. That is why their
discoveries have stood the test of time.

Some observers concede that regression models can be misleading in attempts to identify
causes; once causation has been established, however, they believe the models can be used to
guantify the effects. Quantification is by no means straightforward. It is not only causation that
must be established, but also the specification of the model, including the identification of the
principal confounders, and the form of the equation connecting the relevant factors to the outcomes
of interest (section 6). The number of successes under this heading is not large.

Rothman and others have expressed a preference for confidence intervals over hypothesis
testing. There have been objections, on the grounds that the two forms of inference are isomorphic.
These objections miss the point. The isomorphism can tell us how translate one set of mathematical
theorems into another, but can scarcely dictate the form of an empirical research question. An
investigator may be interested in a point estimate for some parameter, and may also want a measure
of the uncertainty due to random error. For such an investigator, testing a sharp null hypothesis
may be irrelevant. That would lead to confidence intervalsAwwtlues. Such an investigator, of
course, would not care whether the confidence interval just misses—or just covers—some critical
value, like 1.0 for an odds ratio.

To justify his position, Rothman makes two arguments: (i) fixed-level significance testing often
creates artificial dichotomies; (ii) practitioners find it easier to misinterpretlues than point
estimates. See Rothman (1996), Lang, Rothman, and Cann (1998), or Rothman and Greenland
(1998, pp. 183-94). Of course, objectionsievalues can be taken to extremes: when Rothman
was editor ofEpidemiology he banished-values from the pages of that journal.

10. SUMMARY AND CONCLUSIONS

Statisticians generally prefer to make causal inferences from randomized controlled experi-
ments, using the techniques developed by Fisher and Neyman. In many situations, experiments are
impractical or unethical. Most of what we know about causation in such contexts is derived from
observational studies. Sometimes, these are analyzed by regression models; sometimes, these are
treated as natural experiments, perhaps after conditioning on covariates. Delicate judgments are
required in order to assess the probable impact of confounders (measured and unmeasured), other
sources of bias, and the adequacy of the statistical models used to make adjustments. There is much
room for error in this enterprise, and much room for legitimate disagreement.

Snow’s work on cholera, among other examples, shows that causal inferences can be drawn
from non-experimental data. However, no mechanical rules can be laid down for making such
inferences; since Hume’s day, that is almost a truism. Indeed, causal inference seems to require
an enormous investment of skill, intelligence, and hard work. Many convergent lines of evidence
must be developed. Natural variation needs to be identified and exploited. Data must be collected.
Confounders need to be considered. Alternative explanations have to be exhaustively tested. Above
all, the right question needs to be framed.
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Naturally, there is a desire to substitute intellectual capital for labor. That is why investigators
often try to base causal inference on statistical models. With this apprBagiues play a crucial
role. The technology is relatively easy to use, and promises to open a wide variety of questions
to the research effort. However, the appearance of methodological rigor can be deceptive. Like
confidence intervalsP-values generally deal with the problem of sampling error not the problem
of bias. Even with sampling error, artifactual results are likely if there is any kind of search over
possible specifications for a model, or different definitions of exposure and disease.

The modeling approach itself demands critical scrutiny. Mathematical equations are used to
adjust for confounding and other sources of bias. These equations may appear formidably precise,
but they typically derive from many somewhat arbitrary choices. Which variables to enter in the
regression? What functional form to use? What assumptions to make about error terms? These
choices are seldom dictated either by data or prior scientific knowledge. That is why judgment is
so critical, the opportunity for error so large, and the number of successful applications so limited.
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