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0) Introduction

Random Forests is a classification algorithm with a simple structure--a forest
of trees are grown as follows:

1)  The training set is a bootstrap sample from the original training
set.

2)  An integer mtry is set by the user, where m mtry is less than
the total number of variables.  At each node, mtry variables are
selected at random and the node is split on the best split among
the selected mtry.  The tree is grown to its maximal depth.

3)  In regression, as a test vector x  is put down each tree it is
assigned the average values of the y-values at the node it stops at.
The average of these over all trees in the forest is the predicted
value for x.  The predicted value for classification is the class
getting the plurality  of the forest votes.

Random Forests is an accurate algorithm having  the unusual ability to
handle thousands of variables without deletion or deterioration of accuracy.
The difficulty is that although the mechanism appears simple, it is difficult to
analyze.

A heuristic analysis is presented in this paper based on a simplified version of
RF denoted RF0.  The results from RF0 support the empirical results from RF.
RF0 regression is consistent using a value of mtry that does not depend on
the number of cases N  The rate of convergence to the Bayes rule depends
only on the number of strong variables and not on how many noise variables
are also present..  This also implies consistency for the two class RF0
classification. The analysis also illuminates why RF is able to handle large
numbers of input variables and what the role of mtry  is.

Unlike single trees, where consistency is proved letting the number of cases
in each terminal node become large (Breiman et.al [1984])  RF trees are built to



have a small number of cases in each terminal node.   The driving force
behind consistency is completely different.  As the reader will see below it
mostly resembles an adaptive nearest neighbor method that uses a smart
distance measure.  This concept appeared first in a novel and interesting
technical report by Jin and Jeon[2002].

In this report, first the simple model RF0 is described.   Then the
computations are done from which consistency follows.   The role of  ntry
is seen.  Then remarks follow which point up the adaptive nature of the
RF metric.

1.  The RF0  Model

A.   Some empirical results

i)  Omitting the bootstrapping of the training set has very little effect on the
error rate.

ii)  RF can have multiple cases in a single terminal node--i.e. all cases are of
the same class.  Using the medians of randomly selected variables to get to
one case per terminal node has no effect on the error rate.

iii) Splitting without using the class labels i.e. splitting at the medians of the
values of a randomly selected variable at a node significantly increases the
error rate.

These empirical results will be built into our simple model.  Assume that the
training data T={(yn ,xn ),n = 1,..., N} is i.i.d and the input vectors x have M
coordinates.   The M variables in RF0 are assumed uniform and independent.
( this is not a serious restriction and could be replaced by the assumption that
the joint density is bounded above and below)

Each variable xm  is associated with a probability p(m) which sum to one.  The
conditional probability of each class, given x is linear in x and depends equally
on  the "strong" variables only.  If the sample size is large, then for strong
variables, the Gini criterion is minimized by a split at the center of the node.
The splits by weak variables are random.

The trees are constructed like this:

i)  At each node, a single variable is selected with the mth
variable having probability p(m) of being selected.

ii)  If the variable is strong, the split is at the midpoint of the of
values if the selected variable at the node.



iii)  If the variable is weak, the split is at a random point along its
values in the node.

Assume the resulting tree is balanced, with each terminal node resulting
from L = log2 N  splits.    Assume also that there is only one case per terminal
node (this can be inforced by splitting on medians in the lower branches of
the tree)    Bootstrapping the training set is not done.  The analysis will show
that the essential ingredient in consistency is the randomized selection of
splitting variables at the nodes.

The iid random vector Θ  used to construct each tree is a collection of
independent variables which select one item out of M items with probability
p(m).  Denote this collection for one tree by θ , other trees  will be constructed

using independent copies of θ .  For a single tree denote the rectangle
containing xn  by R(xn ,θ) .

Let x  be a test point and drop it down the tree.  If it comes to rest in R(xn ,θ)
assign it the response value yn .    As trees are built using other values of θ  ,
let

Q(x,xn )=Eθ ( I(x∈ R(xn ,θ)

Note that the sum of Q(x,xn )  over n  is one for all x.

The forest estimate for y(x) is

ŷ(x)= Q(x,xn )
n
∑ yn (1)

It can be shown that 1- Q(x,z)  is a Euclidean distance between x and z.
Therefore, (1) shows that RF is a classical nearest neighbor algorithm.  As will
be seen, 1- Q(x,z)  is a smart and adaptive metric.  It can be shown that the
classical conditions for consistency are met.  More will be done to get an
estimate of how fast the Bayes rate is approached.

Assume there are S strong variables and W weak variables, corresponding to
S "large" values of p(m) equal to pS  ,W small values equal to pW , and that

E(y |x)  depends only on the S strong variables  (S and W are unknown).

The Bayes estimate for y(x)  is E(y|x) .  We will show that



ET ( ŷ(x)∫ −E(y |x))2 dx 1 )

goes to  zero as the sample size increases, where ET  is the expectation with
respect to the training set., and that the rate of convergence depends only on S
and not on W.

This proof is for regression.   But , as Devroye et.al. show,  the rate of
convergence to the Bayes rate for the two class classification problem is faster
than the square root of 1)

2  Decomposition into Variance and Bias

         ŷ(x)= Q(x,xn )
n
∑ (yn −E(y|xn ))+ Q(x,xn )

n
∑ E(y|xn )

Thus, with the ET  expectation implicit in all terms,

                ( ŷ(x)∫ −E(y |x))2 dx≤2 [ Q2 (x,xn )
n
∑ (yn −E(y|xn ))∫ ]2 +

        2 [ Q(x,xn )
n
∑ (E(y |x)−E(y|xn ))∫ ]2

Using  familiar terminology  the first term is referred to as variance V(N),, the

second as bias B(N).   Assume that E((yn −E(y|xn ))2 ≤v.  Then the variance
term is initially bounded by

v Q(x,xn )
n
∑ 2∫ dx 2)

3.  Bounding the Variance

The bound on the variance is made possible by the randomization.
Recall  that  Q(x,xn )=Eθ ( I(x∈ R(xn ,θ)).  so

Q(x,xn )2 ≤Eθ Eθ' I(x∈ R(xn ,θ)∩ R(xn ,θ' ))

where  θ,θ' are independent outcomes of Θ.  Then V(N) is bounded by:



Eθ Eθ' P(R(xn ,θ)∩ R(xn ,θ'
n
∑ )) .

The rectangles are  the product of m intervals J(m,θ),J(m,θ' )  with

|J(m,θ)
m
∏ |=1/ N |J(m,θ' )

m
∏ |=1/ N .

The problem is to get a bound on V(θ,θ' )= |J(m,θ)∩ J(m,θ' )
m
∏ |.

The length

|J(m,θ)|  = 2−n(m,θ)

where n(m,θ) is the number of cuts by the mth variable leading to the
formation of the rectangle.  This holds for the strong variables.  It also holds
for the expectation of the length for weak variables.

The sum of the n(m,θ) equals L.  For the number of variables M large
enough, assume that the { n(m,θ)} are independent and have a binomial
distribution with L trials and probability p(m) of success.   Clearly:

|J(m,θ)|∩ J(m,θ' )|≤2−max(n(m,θ),n(m,θ' ))

and

2−max(n(m,θ),n(m,θ' )) =2−n(m,θ)−[n(m,θ' )−n(m,θ)]+

Multiplying gives:

V (θ,θ' )≤ 1
N

2−[n(m,θ' )−n(m,θ)]+

,m
∏

The right hand side can be evaluated exactly (see appendix).  The relevant
result is that if p(m)L is large, then

Eθ Eθ' 2−[n(m,θ' )−n(m,θ)]+ ≈1/ πp(m)L



If p(m)L is small, then

Eθ Eθ' 2−[n(m,θ' )−n(m,θ)]+ ≈e−p(m)L

Recall that there are S strong variables with p(m)=ps  and W weak with
p(m)=pw.   Then

V (N )≤(πpsL)−S /2 exp(−WpwL) 3)

 3) Bounding the Bias

Bound the bias term (before integration) as

[Eθ I( x∈∑ R(xn ,θ)(E(y |x)−E(y|xn ))]2

 ≤Eθ [ I( x∈∑ R(xn ,θ)(E(y |x)−E(y|xn ))]2

≤Eθ [ I( x∈∑ R(xn ,θ)[(E(y |x)−E(y|xn )]2

Use the approximation

 E(y|xn )−E(y |x)≈(xn −x)∇ E(y |x)

where ∇  is the gradient operator.  By assumption ∇ E(y |x)has zero
components for all weak variables.  Then

[(xn −x)∇ E(y |x)]2 ≤||xn −x||S
2 ||∇ E(y |x)||S

2

where the subscript S indicates--sum over only those components
corresponding to strong variables.  Let G=supx |∇ E(y |x)||S

2 .  The bias bound is
now:

    GEθ [ I( x∈∑ R(xn ,θ)||xn −x||S
2 ].

Consider integrating on x.  The mth component of x is constrained to be in an
interval of length |J(m,θ)| containing the mth component of xn .   Assume
the mth component is a strong variable.  Then



     E(xm −xm,n )2 ≤|J(m,θ)|3 /3.

Recalling that the product of the lengths of the intervals is 1/N, gives the bias
bound

  B(N )≤ G

3
Eθ |J(m,θ)|2

S
∑

Since  |J(m,θ)|2 =2−2n(m,θ),  taking expectations gives

B(N )≤ G

3
S exp(−.75pSL)

4.  Optimizing

The upper bounds for B(N )  and V(N) contain the unknown parameters pS
and pW .   To see the effect of mtry the next step is the minimization of the
sum of the bounds with respect to these parameters.  Actually there is only
one unspecified parameter since WpW +SpS =1.  Problem: find pS  to
minimize

      (πpsL)−S /2 exp(−WpwL)+G

3
S exp(−.75pSL)

Skipping the algebraic details, an approximate solution is pS ≈L /S(S+.75)
and the minimizing value is

1

N.75/(S+.75)

NOTE The rate of approach to the Bayes risk depends only on the 
number of strong variables.   This explains why RF does so well 
when there are many  noise variables.

5.  Optimizing Using  Mtry.

In practice, with an largely unknown data set,  we have only vague ideas
about the size of S  and what to take for the { p(m)} that will give near



optimal performance .   The advice given to users is to try several values of
mtry  and use the one that gives lowest cross-validated (oob) error rate.

We examine the performance of this procedure when there are S strong
variables and W weak ones.  Choose mtry  variables from among the M at
random with replacement--then choose the one that gives the best split.
Assume all strong variables give equal results on the split.  The same for all
weak variables.  If the selection is all weak, then choose one at random to split
on.  If there is more than one strong variable selected in mtry, select one  at
random to split on.

The probability that a variable in the W group will be chosen for a split is:

1
W

(W / M)mtry 5)

In the S group, the probability is

1
S

(1−(W / M)mtry ) 6)

At the optimal mtry  the optimal  pS  will be equal to 6).  Assume W large
compared to S, then

mtry≈M /S(1+(4/3)S)

Thus looking for an optimal mtry will give values of the probabilities for
using the variables that are close to optimal computed as without knowing
the size of S and W.   Note also that the optimal value of mtry  does not
depend on N.  Unlike kNN nearest neighbor where k must be increased with
N to get optimal convergence,  one value of mtry  does for all sample sizes N.

6  Remarks

As simplistic as the above model is, it goes far to clarify the behavior of
Random Forests.  We see that it is an adaptive nearest neighbor azlgorithm
where

i)  The randomization works to reduce the variance.
ii) It adapts to the loss function by having the narrowest widths in the
terminal nodes corresponding to the largest components of the loss function.
iii)  It automatically adapts to the sample size.
iv)  The optimal value of mtry  does not depend on the sample size.



A questionable part of RF0's definition is the assumption that with a linear
loss function, the best cut by a strong variable will be at the center of the node.
This is true only for nodes containing  a large sample.  Otherwise the cut will
depend more strongly on the individual values of the {yn}and the
independence property used to derive 2) is not applicable.    Removing this
assumption makes a consistency proof at least an order of magnitude more
difficult and involves ideas centered around the VC dimension.

I am indebted to the Lin-Jeon technical report for suggestive insights that led
to some of the above conclusions.
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Appendix  (surely this must be known somewhere)

Set

ϕ (z)=Ezn(m,θ' )−n(m,θ)

         =( p(z+1/ z)+1−p)L

where p=2 p(m)

P(n(m,θ' )−n(m,θ)=k)= 1
2πi

ϕ (z)∫ z−k−1dz

so

                          2−k

k≥0
∑ P(n(m,θ' )−n(m,θ)=k)= 1

2πi
ϕ (z)∫ z−1 /(1−(1/2z))dz

Substituting z=eiθ  in the right hand side and doing simplification gives

1
π

(2−cosθ)
(5−4cosθ)

∫ (1−2 psin2 (θ /2))L dθ



The results stated above for large and small p can be derived from this
integral.


