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Overview

• AdaBoost

− Recall: unnormalized KL projection.

− Convergence of AdaBoost.

• Model selection

− Complexity penalization.

− Oracle inequalities.

− Universal consistency.

• Universal consistency of AdaBoost.
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Recall: unnormalized KL projection

Consider the two sets:

P =
⋂

f∈G

C(f) =
⋂

f∈G

{

p ∈ R
n :

n∑

i=1

piyif(xi) = 0

}

,

Q =






p ∈ R

n : pi = exp



−yi
∑

f∈G

λ(f)f(xi)



 , λ ∈ R
G







and the dual optimization problems:

min
p

DuKL(p, 1)

s.t. p ∈ P .

min
q

DuKL(0, q)

s.t. q ∈ Q.
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Recall: unnormalized iterative projection algorithm

p1 = 1.

for t = 1, 2, . . . , T do
Chooseft ∈ G to maximize

DuKL

(
ΠC(ft)(pt), pt

)
.

Setpt+1 = ΠC(ft)(pt).

end for
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Recall: AdaBoost is iterative projection

Theorem: At iteration t, the unnormalized iterative projection algo-

rithm choosesft so that it andαt minimize

Zt =

∑n
i=1 pt,i exp (−yiαtft(xi))

∑n
i=1 pt,i

,

and the algorithm sets

pt+1,i = pt,i exp (−αtyift(xi)) .

i.e., it is (unnormalized) AdaBoost.
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Convergence of AdaBoost

Some notation:
Write the update step of the unnormalized iterative projection algorithm
asA, so that at iterationt it sets

pt+1,i = A(pt) = pt,i exp (−αtyift(xi)) .

Notice that the exponential loss after iterationt is pTt+11:

n∑

i=1

exp

(

−yi

t∑

s=1

αsfs(xi)

)

=
n∑

i=1

t∏

s=1

exp (−yiαsfs(xi))

=

n∑

i=1

t∏

s=1

ps+1,i

ps,i
=

n∑

i=1

pt+1,i

p1,i
= pTt+11.
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Convergence of AdaBoost

Theorem: For the sequencep1, p2, . . . chosen by the algorithm,

1. pt ∈ Q.

2. The exponential loss is non-increasing:(A(pt)− pt)
T 1 ≤ 0.

3. SincepTt 1 ≥ 0, (A(pt)− pt)
T 1 → 0.

4. If (A(pt)− pt)
T 1 = 0, thenpt ∈ P.

5. The sequencep1, p2, . . . contains a limit point.

6. Since(A(pt)− pt)
T 1 is continuous, all limit points are inP ∩Q.
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Convergence of AdaBoost: Proof idea

1: 1 ∈ Q and we have seen that the unnormalized KL-projections involve
multiplication by exponentials, leavingpt+1 ∈ Q.

2: We’ve seen that the algorithm is equivalent to AdaBoost, which

greedily minimizes the exponential loss.

3: pTt 1 is bounded below and monotonically non-increasing, so it

approaches a limit.

4: It’s straightforward to show that

(A(p)− p)T 1 = −max
f∈G





√
∑

i:yif(xi)=1

pi −

√
∑

i:yif(xi)=−1

pi





2

.

And if this is zero, then for allf ∈ G, the two terms are equal, which

impliesp ∈ P.
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Convergence of AdaBoost: Proof idea

5: Since thept come from a compact set (0 ≤ pt,i ≤ pTt 1 ≤ pT1 1 = n, so

pt ∈ [0, n]n), they have a limit point.

6: It’s clear that(A(p)− p)T 1 is continuous, so any limit pointp∗ must

have(A(p∗)− p∗)T 1 = 0, sop∗ ∈ P. And pt ∈ Q, sop∗ ∈ P ∩Q.
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Pythagorean Theorem

Lemma: If p∗ ∈ P ∩Q, then for allp ∈ P andq ∈ Q,

DuKL(p, q) = DuKL(p, p
∗) +DuKL(p

∗, q).

Becausep ∈ P andq ∈ Q,
∑

i pi ln qi = 0. Hence,

DuKL(p, p
∗) =

∑

i

(pi ln pi + p∗i − pi),

DuKL(p
∗, q) =

∑

i

(qi − p∗i ),

DuKL(p, q) =
∑

i

(pi ln pi + qi − pi),

which implies the result.
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Convergence of AdaBoost

The Pythagorean theorem, applied to1 ∈ Q and0 ∈ P, shows that there
can be no more than one point inP ∩Q, and it solves both optimization
problems.

Theorem: Suppose there is ap∗ ∈ P ∩ Q.

1. For anyp ∈ P with p 6= p∗,

DuKL(p, 1) = DuKL(p, p
∗) +DuKL(p

∗, 1)

> DuKL(p
∗, 1).

2. For anyq ∈ Q with q 6= p∗,

DuKL(0, q) = DuKL(0, p
∗) +DuKL(p

∗, q)

> DuKL(0, p
∗).
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Convergence of AdaBoost

But we’ve seen that thept sequence produced by the iterative projection

method (i.e., AdaBoost) has at least one limit point, and allof its limit

points are inP ∩Q. So it must converge to the unique solution

p∗ ∈ P ∩Q of both optimization problems.
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Model selection

Let’s return to the problem of minimizing risk. We can decompose the
excess risk (over the Bayes riskR∗) as

R(f̂)−R∗ =

(

R(f̂)− inf
f∈F

R(f)

)

︸ ︷︷ ︸

estimation error

+

(

inf
f∈F

R(f)−R∗

)

︸ ︷︷ ︸

approximation error

The first (second) term increases (decreases) with the complexity of the
classF . Model Selectionis the problem of automatically choosing the
complexity to optimize this trade-off.

For instance, if we are combining classifiers (as AdaBoost does), as the
size of the combination grows (measured perhaps in terms of the number
of base classifiers, or perhaps in terms of the total weight ofthe
combination), the complexity of the combination increases. How can we
choose this complexity to minimize risk?
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Complexity-penalized model selection

1. Define a complexity hierarchyF1 ⊆ F2 ⊆ · · · .

2. Setfkn = argminf∈Fk
R̂(f).

3. Choosef̂ = argmin R̂(fkn) + pk(n), (pk(n) = complexity penalty).

Examples:

• Maximuma posteriori estimate:ℓ(p̂, z) = − log(p̂(z)),
pk(n) = log(1/π(k))/n.

• Akaike Information Criterion:pk(n) = dim(Fk)/n.

• Structural risk minimization:ℓ = 0/1 loss,pk(n) =
√

dV C(Fk)/n.

• Risannen’s minimum description length:pk(n) =codelength.

• Error estimates:pk(n) = high confidence upper bound on
R(fkn)− R̂(fkn), e.g., based on VCdim, Rademacher averages, etc.
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Oracle inequalities

Theorem: Suppose that

P
(

R(fkn) > R̂(fkn) + pk(n) + ǫ
)

≤ c1 exp(−c2nǫ
2).

If f̂ is chosen to minimizêR(fkn) + pk(n) +
√

log k
c2n

, then

P

(

R(f̂) > inf
k

(

inf
f∈Fk

R(f) + pk(n) + 2

√

log k

c2n

)

+ ǫ

)

≤ (c1 + 1) exp(−c2nǫ
2/2).
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Oracle inequalities

Notice that, for eachk, the condition of the theorem ensures that with

probability at least1− δ,

R(fkn) ≤ inf
f∈Fi

R(f) + pk(n) + c

√

log 1/δ

n
.

So the theorem shows thatf̂ satisfies the best of these inequalities (with

the addition of a
√

log k/n term). It is as if an oracle told us which class

k would give the best performance guarantee, and we have (almost) the

performance guarantee for that class.

The proof involves splitting the confidenceδ across the classes

(δk = δ/k2), applying a union bound, and summing tail inequalities.
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Universal consistency

We can rewrite the conclusion of the theorem in terms of excess risk:

R(f̂)−R∗ ≤ min
k

(

inf
f∈Fk

R(f)− R∗ + pk(n) + c

√

log k

n

)

+c

√

log 1/δ

n
.

As long aslimn→∞ pi(n) = 0, and

lim
i→∞

inf
f∈Fi

R(f)−R∗ = 0,

then takingn→ ∞ ensures thatR(f̂) → R∗.

This property is calleduniversal consistency.
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Universal consistency of AdaBoost

There are three difficulties in applying an analogous argument to

AdaBoost:

1. AdaBoost minimizes exponential loss.

2. Concentration inequalities rely on boundedness, butFT is

unbounded.

3. AdaBoost does not have explicit complexity regularization. Isearly

stopping (restrictingT ) sufficient?
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Universal consistency of AdaBoost: Definitions

1. FT =
∑T

t=1 αtft.

2. Clipped version:

πC(FT (x)) =







C if FT (x) ≥ C,

−C if FT (x) ≤ −C,

FT (x) otherwise.

3. Optimal with normB:

F ∗
B = arg min

‖F‖≤B
Rφ(F )

where‖F‖ =
∑

t |αt| for F =
∑

t αtft.
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Universal consistency of AdaBoost: Key ideas

1. Rφ(πC ◦ FT ) ≤ R̂φ(πC ◦ FT ) + ǫ1(n, T, C, δ).

(Uniform law of large numbers for aT -combination.)

2. R̂φ(πC ◦ FT ) ≤ R̂φ(FT ) + ǫ2(C).

(Approximation error of clipping for exponential loss.)

3. R̂φ(FT ) ≤ R̂φ(F
∗
B) + ǫ3(B, T, n).

(convergence rate)

4. R̂φ(F
∗
B) ≤ Rφ(F

∗
B) + ǫ4(B, n, δ).

(e.g., Hoeffding)

5. Rφ(F
∗
B) ≤ R∗

φ + ǫ5(B).

(For sufficiently richG, limB→∞ ǫ5(B) = 0)
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Universal consistency of AdaBoost

Then:

ψ (R(FT )−R∗) ≤ Rφ(πC ◦ FT )− R∗
φ

≤ ǫ1(n, T, C, δ) + ǫ2(C) + ǫ3(B, T, n)+

+ ǫ4(B, n, δ) + ǫ5(B) +R∗
φ.

Allowing T, n, C,B → ∞ at appropriate rates demonstrates universal

consistency. Theǫ1 term shows that we needT = o(n) iterations: early

stopping suffices for regularization.
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Convergence rate: key ideas

ForLt = ln
R̂φ(Ft)

R̂φ(F ∗
B)

, St = |Ft|+ |F ∗
B|, γt =

1

2
− ǫt, we have:

Rt−1 ≤ 2γtSt−1,

Rt−1 −Rt

St − St−1
≥ γt,

Rt−1 −Rt ≥ 2γ2t .

Hence,

R̂φ(FT ) ≤ R̂φ(F
∗
B) + 2

(
B6

T

)1/5

.
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