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‘Recall: unnormalized KL projection I

Consider the two sets:

P=()cfH)=) {peR”:Zpiyif(:vz‘) —0}7

J€g J€g i=1

Q = {pER” . D; = exp (yZZ)\(f)f(:I;Z)> : )\ERQ}

feg

and the dual optimization problems:

mgn DuKL(p71>

S.t. peP.




‘ Recall: unnormalized iterative projection algorithm I

P1 = 1.
fort=1,2,...,Tdo
Choosef, € G to maximize

Dykr (HC(ft) (pt)apt) :

Setpr+1 = ey, (pt).
end for




Recall: AdaBoost is iterative projection'

Theorem: At iteration ¢, the unnormalized iterative projection alg
rithm chooseg; so that it andy; minimize

7, = Z?:l Dt,i €XP (—yz‘Oétft(l‘z‘))

D im1 Dt

and the algorithm sets

Pt+1,i — Pt,i €XP (—Oétyz'ft(l‘z')) °

l.e., itis (unnormalized) AdaBoost.




Convergence of AdaBooEI
Some notation:

Write the update step of the unnormalized iterative prapacalgorithm
as A, so that at iteration it sets

Pt+1,i = A(pt) = Pt,i €XP (—Oétyz‘ft(wz‘)) -

Notice that the exponential loss after iteratiais p;, ; 1:

n

Z exXp <_yi Z Qs fs ($z)>

1=1

— Z H exp (—yis fo(i))

1=1 s=1

_ ansﬂz Pi+1i t+11-

1=1 s=1 psz




Convergence of AdaBooﬂ

Theorem: For the sequencg,, po, ... chosen by the algorithm,
1. Dt € Q

2. The exponential loss is non-increasiig:(p;) — p;)?'1 < 0.

3. Sincep!'1 >0, (A(ps) — ps)T'1 — 0.
4. |f (A(pt) —pt)Tl — O, thenpt c P.
5. The sequencg, p», ... contains a limit point.

6. Since(A(p;) — p:)1'1is continuous, all limit points are i N O.




‘ Convergence of AdaBoost: Proof idei

1: 1 € Q and we have seen that the unnormalized KL-projections vevol
multiplication by exponentials, leaving ., € Q.

2. We've seen that the algorithm is equivalent to AdaBoosictv
greedily minimizes the exponential loss.

3: p! 1 is bounded below and monotonically non-increasing, so it
approaches a limit.

4: It's straightforward to show that

(A(p) —p)"'1 = —max > pi- > b

€g
g iy f(zs)=1 iy f(xi)=—1

And if this is zero, then for alf € G, the two terms are equal, which
impliesp € P.




‘ Convergence of AdaBoost: Proof idei

5: Since thep; come from a compact sl € p;; < pl1 < pil=mn,so
pe € [0,n]™), they have a limit point.

6: It's clear that{ A(p) — p)'1 is continuous, so any limit point* must
have(A(p*) — p*)T'1 =0, sop* € P. Andp; € Q, sop* € PN Q.




‘ Pythagorean Theoreﬂ

Lemma: If p* € PN Q, then forallp € P andq € O,

Dukr(p,q) = Duxr(p,p*) + Durr(p", q).

Because € P andg € Q, >, p;Ing; = 0. Hence,

Dukr(p,p*) =Y (pilnpi +p; — pi),

1

Dukr(p*,q) = > (4 — p}).

)

Dukr(p.q) =Y (pilnp; + ¢ — pi),

1

which implies the result.




Convergence of AdaBooEI

The Pythagorean theorem, appliedite Q and0 € P, shows that there
can be no more than one pointfinN Q, and it solves both optimization
problems.

Theorem: Suppose there is@gt € PN Q.
1. For anyp € P with p # p*,

Durkr(p,1) = Durkr(p,p*) + Dukxr(p™, 1)
> DuKL(p*a 1)

2. For anyg € Q with ¢ # p*,

Dukr(0,q9) = Dyxr(0,p") + Durr(p”, q)
> D,k (0,p).




Convergence of AdaBooﬂ

But we've seen that the, sequence produced by the iterative projection

method (i.e., AdaBoost) has at least one limit point, andfalis limit
points are irfP N Q. So it must converge to the unique solution
p* € PN Q of both optimization problems.




Model seIection.

Let’s return to the problem of minimizing risk. We can decars@ the
excess risk (over the Bayes rigk) as
R(f) — R* = (R(f’) — inf R(f)) + (inf R(f) — R*)

feF fer

\ .

Ve Ve

estimation error approximation error

The first (second) term increases (decreases) with the earpbf the

classF'. Model Selectionis the problem of automatically choosing the
complexity to optimize this trade-oft.

For instance, if we are combining classifiers (as AdaBoossji@as the
size of the combination grows (measured perhaps in terntgeafiumber
of base classifiers, or perhaps in terms of the total weigtitef
combination), the complexity of the combination increasésw~ can we
choose this complexity to minimize risk?




‘ Complexity-penalized model selectio:'

1. Define a complexity hierarchy; C F» C - - -
2. Setfr = argmin cp, R(f).

3. Choosef = argmin R(f¥) + py(n), (pr(n) = complexity penalty).
Examples:

o Maximuma posteriori estimate’(p, z) = — log(p(z)),
pr(n) =log(1/m(k))/n.

Akaike Information Criterionpg(n) = dim(F%)/n.

Structural risk minimization? = 0/1 losspx(n) = \/dyc(EFk)/n.

Risannen’s minimum description lengthy; (n) =codelength.

Error estimatespx (n) = high confidence upper bound on
R(f¥) — R(f¥), e.g., based on VCdim, Rademacher averages, etq




Oracle inequalities'

Theorem: Suppose that

P (R(f,,]f) > R(f;f) + pr(n) + e) < ¢ exp(—cane?).

If fis chosen to minimiz&k(f*) + pi(n) logk ‘then

con

P <R(f) > inf ( inf R(f)+ pi(n) + 2 10gk> —l—e)

k \ fEF) Comn

< (c1 + 1) exp(—cone®/2).




Oracle inequalities'

Notice that, for eaclt, the condition of the theorem ensures that with
probability at least — 9,
log1/§

R(ff,lf)éfiéllaR(f)—i—pk(n)+c .

So the theorem shows thatsatisfies the best of these inequalities (with
the addition of a,/log k /n term). Itis as if an oracle told us which class
k would give the best performance guarantee, and we have gglthe
performance guarantee for that class.

The proof involves splitting the confidenéecross the classes
(6, = 6/k?), applying a union bound, and summing tail inequalities.




Universal consistencz'

We can rewrite the conclusion of the theorem in terms of exosk:

] log1/6
ogk>+c ogl/ |

R(f)—R* < min < inf R(f) — R*+pr(n)+c

k fEF) n n

As long adim,, ... p;(n) = 0, and

lim inf R(f) — R" =0,

A

then takingn — oo ensures thak(f) — R*.

This property is callediniversal consistency.




‘ Universal consistency of AdaBooﬂ

There are three difficulties in applying an analogous arguroe
AdaBoost:

. AdaBoost minimizes exponential loss.

. Concentration inequalities rely on boundednessfhus
unbounded.

. AdaBoost does not have explicit complexity regularaatilsearly
stopping (restricting?’) sufficient?




‘ Universal consistency of AdaBoost: Definition'

1. FT = Zle Oétft.
2. Clipped version:

2

mo(Fr(r)) =4 -C  if Fr(z) < -C,

| Fr(z) otherwise.

3. Optimal with normB:

Fr = in Ry(F
B =arg i, Re(F)

where||F'|| = >, |ag| for FF = >, oy f;.




Universal consistency of AdaBoost: Key idefi

. Ry(mc o Fr) < Ry(me o Fr) 4 e1(n, T, C, 5).
(Uniform law of large numbers for @-combination.)

. R(b(ﬂ'c O FT) S R¢(FT) + EQ(C).
(Approximation error of clipping for exponential loss.)

. Ry(Fr) < R4(F}) + e3(B, T, n).
(convergence rate)

. Ry(F3) < Ry(F5) + es(B,n,0).
(e.g., Hoeffding)

. Ry(Fp) < RS + e5(B).
(For sufficiently richG, limp_, o €5(B) = 0)




‘ Universal consistency of AdaBooﬂ

Then:

v (R(Fr) — R") < Ry(mc o Fr) — R,
< 61(77’7 T7 Ca 5) + 62(0) + 63(37 T7 n)+
+ €4(B,n,d) + e5(B) + Ry.
Allowing T',n,C, B — oo at appropriate rates demonstrates universal

consistency. The; term shows that we neéld = o(n) iterations: early
stopping suffices for regularization.




Convergence rate: key idea’

Ry(F
ForL, =1In Agb( i), St = |Fy| + | F5l, Ve =
R¢(FB)
Ri—1 <2v.5: 1,

Ri—1 — Ry

>
Ry — Ry > 277,




