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Overview

• AdaBoost

− Coordinate descent with other losses.

− Dual problem: maximum entropy/I-projection.

− AdaBoost is iterative projection method.

− Weakly learnable⇔ infeasible.

− Unnormalized KL projection.

− Convergence of AdaBoost.
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Boosting—coordinate descent—with other losses

We have seen that we can think of AdaBoost as choosingF ∈ span(G) to

minimizeEn exp (−Y F (X)), in a greedy, stepwise way:

with Ft−1 =
∑t−1

s=1 αsfs fixed, chooseαt ∈ R andft ∈ G to minimize

En exp (−Y (Ft−1(X) + αtft(X))) .

We can use similar ideas for loss functions other than

φ(yF (x)) = exp(−yF (x)).

For example, logistic loss (LogitBoost) and quadratic loss(c.f. Tukey’s

“twicing”):

φlogistic(yf(x)) = log(1 + exp(−yf(x))),

φ2(yf(x)) = (1− yf(x))2.
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Boosting—coordinate descent—with other losses

Consider the minimization of

J(F ) = Enφ(Y Ft(X)) = Enφ(Y (Ft−1(X) + αtft(X)).

Fix Ft−1 and consider gradient descent: choose a directionv ∈ R
n to

minimizevT∇vJ(Ft−1(x
n
1 ) + v). We have

∂

∂vi
J(Ft−1(x

n
1 ) + v) =

1

n
φ′(yiFt−1(xi))yi,

sov should minimize
n∑

i=1

viyiφ
′ (yiFt−1(xi)) =

n∑

i=1

(−viyi) (−φ′ (yiFt−1(xi))) .
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Boosting—coordinate descent—with other losses

If vi, yi ∈ {±1}, this is equivalent to minimizing

n∑

i=1

Dt(i)1[vi 6= yi],

whereDt(i) is −φ′(yiFt−1(xi)), appropriately normalized. More

generally (for instance, if thef ∈ G are real-valued),v should be chosen

to maximize the inner product

n∑

i=1

Dt(i)viyi.
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Boosting—coordinate descent—with other losses

D1(i) =
1
n

, i = 1, . . . , n.

F0(x) = 0.

for t = 1, . . . , T do
Chooseft ∈ G to minimize

n∑

i=1

Dt(i)yift(xi).

Chooseαt ∈ R to minimize

Enφ (Y (αtft(X) + Ft−1(X))) .

Ft = Ft−1 + αtft.

Dt+1(i) =
−φ′(yiFt(xi))

Zt

.

end for
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Dual problem: maximum entropy/I-projection

Consider the following minimization problem:

KL Minimization:

min
p

DKL(p, u)

s.t.
n∑

i=1

piyif(xi) = 0 for f ∈ G.

p ≥ 0

pT 1 = 1,

whereu is the uniform distribution,ui = 1/n, andDKL is the

KL-divergence,DKL(p, u) =
∑

i pi ln(pi/ui).
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Dual problem: maximum entropy/I-projection

Ignoring the positivity constraint (we’ll see we get it for free), the

Lagrangian is

L =
n∑

i=1

pi ln(npi) +
∑

f∈G

αf

(
n∑

i=1

piyif(xi)

)

+ β
(
pT 1− 1

)
.

∂L

∂pi
= ln(npi) + 1 +

∑

f∈G

αfyif(xi) + β.

pi = exp (−(lnn+ 1 + β)) exp



−
∑

f∈G

αfyif(xi)



 .

=
1

Z
exp



−
∑

f∈G

αfyif(xi)



 . (lnZ = lnn+ 1 + β.)
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Dual problem: maximum entropy/I-projection

If we set0 =
∑

i pi
∂L
∂pi

= L+ pT 1 + β, we see that

L = −(β + 1) = lnn− lnZ, so the dual problem is

Exponential Minimization:

min
α

n exp(−g(α)) = Z =

n∑

i=1

exp

(

−yi
∑

h∈G

αhh(xi)

)

.

And this is the criterion that AdaBoost minimizes.
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Iterative projection algorithm

Some notation: forf ∈ G, define the constraint

C(f) =

{

p ∈ ∆n :
n∑

i=1

piyif(xi) = 0

}

.

Recall the definition of the KL-projection,

ΠS(pt) := argminp∈S DKL(p, pt).
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Iterative projection algorithm

p1 = u.

for t = 1, 2, . . . , T do
Chooseft ∈ G to maximize

DKL

(
ΠC(ft)(pt), pt

)
.

Setpt+1 = ΠC(ft)(pt).

end for

At each step, projectspt onto a constraintC(ft).
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AdaBoost is iterative projection algorithm

Theorem: At iteration t, this iterative projection algorithm choosesft
so that it andαt minimize

Zt =
n∑

i=1

pt,i exp (−yiαtft(xi)) ,

and the algorithm sets

pt+1,i =
pt,i
Zt

exp (−αtyift(xi)) .

i.e., it is AdaBoost.
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AdaBoost is iterative projection algorithm: proof

For a fixedft, the Lagrangian of the KL-projection on toC(ft) is

L(p, α, µ) =
∑

i

pi ln
pi
pt,i

+ α
∑

i

piyift(xi) + µ

(
∑

i

pi − 1

)

,

and setting∂L/∂pi = 0 gives

pt+1,i = pt,i exp (−αyift(xi)) exp(−1− µ)

=
pt,i
Zt

exp (−αyift(xi)) .

Substituting intoL shows that the dual problem is maximization of

g(α, µ) = − lnZt. And so the dual variableαt is chosen to minimizeZt.
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AdaBoost is iterative projection algorithm: proof

Also,

DKL(pt+1, pt) =
∑

i

pt+1,i ln
pt+1,i

pt,i

=
∑

i

pt+1,i (−αtyift(xi)− lnZt)

= − lnZt.

Soft is also chosen to minimizeZt.
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Iterative projection does not converge if weakly learnable

Theorem: If G = −G, the feasible set
⋂

f∈G
C(f) is empty iff there is

a weak learner, that is, for someγ > 0, for all distributionsp, there is an

f ∈ G such that
∑

i

pi1[yi 6= f(xi)] ≤
1

2
− γ.

And notice that, if there is aγ-weak learner, thenZt ≤
√

1− 4γ2, so

DKL(pt+1, pt) = − lnZt ≥
1

2
ln

1

1− 4γ2
,

so the iterative projection algorithm does not converge.

15



Iterative projection with unnormalized KL divergence

We can avoid this difficulty if we replaceDKL with DuKL:

Unnormalized KL Minimization:

min
p

DuKL(p, 1)

s.t.
n∑

i=1

piyif(xi) = 0 for f ∈ G,

p ≥ 0,

where1 is the all 1s vector, andDuKL is the unnormalized
KL-divergence,

DuKL(p, q) =
n∑

i=1

(

pi ln

(
pi

qi

)

+ qi − pi

)

.
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Iterative projection with unnormalized KL divergence

Again we can ignore the positivity constraint, and compute the

Lagrangian:

L =
n∑

i=1

(pi ln(pi) + 1− pi) +
∑

f∈G

αf

(
n∑

i=1

piyif(xi)

)

.

∂L

∂pi
= ln(pi) +

∑

f∈G

αfyif(xi).

pi = exp



−yi
∑

f∈G

αfyif(xi)



 .
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Iterative projection with unnormalized KL divergence

We see that the dual problem is:

Exponential Minimization:

min
α

n− g(α) =

n∑

i=1

exp



−yi
∑

f∈G

αff(xi)



 .

Again, this is the criterion that AdaBoost minimizes.
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Unnormalized iterative projection algorithm

p1 = 1.

for t = 1, 2, . . . , T do
Chooseft ∈ G to maximize

DuKL

(
ΠC(ft)(pt), pt

)
.

Setpt+1 = ΠC(ft)(pt).

end for

At each step, projectspt onto a constraintC(ft).

The projectionΠC(ft)(pt) is wrt DuKL.
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AdaBoost is unnormalized iterative projection algorithm

Theorem: At iteration t, the unnormalized iterative projection algo-

rithm choosesft so that it andαt minimize

Zt =

∑n
i=1 pt,i exp (−yiαtft(xi))

∑n

i=1 pt,i
,

and the algorithm sets

pt+1,i = pt,i exp (−αtyift(xi)) .

i.e., it is (unnormalized) AdaBoost.
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AdaBoost is iterative projection: Proof

Note thatp = 0 shows that this problem is always feasible.

The proof of the theorem is similar to the normalized case: For a fixedft,

the Lagrangian of the unnormalized KL-projection on toC(ft) is

L(p, α) =
∑

i

(

pi ln
pi
pt,i

+ pt,i − pi

)

+ α
∑

i

piyift(xi).

Setting∂L/∂p(i) = 0 gives

pt+1,i = pt,i exp (−αyift(xi)) .

21



AdaBoost is iterative projection: Proof

Substituting intoL shows that the dual problem is maximization of

g(α) =
n∑

i=1

(pt,i − pi) = (1− Z)
n∑

i=1

pt,i,

where, as in the AdaBoost notation,

Z =

∑n
i=1 pt,i exp (−αyift(xi))

∑n

i=1 pt,i
.

Once again, the dual variableαt is chosen to minimizeZt.
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AdaBoost is iterative projection: Proof

And since

DuKL(pt+1, pt) = −αt

n∑

i=1

pt+1,iyift(xi)

︸ ︷︷ ︸

=0

+
n∑

i=1

(pt,i − pt+1,i)

= (1− Z)
n∑

i=1

pt,i,

maximizing this quantity overft is equivalent to minimizingZt.
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Convergence of AdaBoost

To understand the convergence ofpt, consider the two sets:

P =
⋂

f∈G

C(f) =
⋂

f∈G

{

p ∈ R
n :

n∑

i=1

piyif(xi) = 0

}

,

Q =






p ∈ R

n : pi = exp



−yi
∑

f∈G

λ(f)f(xi)



 , λ ∈ R
G







If the data isγ-weakly learnable, then the only feasible point isp = 0.

And in that case, we’ve seen that thept converge to0, but the direction of

thept does not converge. What about other cases?
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