CS281B/Stat241B. Statistical Learning Theory. Lecture
26.

Peter Bartlett




\ Overview I

AdaBoost
Coordinate descent with other losses.
Dual problem: maximum entropy/I-projection.
AdaBoost is iterative projection method.
Weakly learnable= infeasible.
Unnormalized KL projection.

Convergence of AdaBoost.




Boosting—coordinate descent—with other Iossﬂs

We have seen that we can think of AdaBoost as chooBirgspan(G) to
minimizeE, exp (=Y F'(X)), in a greedy, stepwise way:
with F,_; = '~ a, f, fixed, choosey, € R andf, € G to minimize

E, exp (—Y (Fi_1(X) + acfi(X))).

We can use similar ideas for loss functions other than
¢(yF'(x)) = exp(—yF'(x)).
For example, logistic loss (LogitBoost) and quadratic @sk Tukey’s
“twicing”):
Progistic(yf(x)) = log(1l +exp(—yf(x))),
d2(yf(x)) = (1 —yf(x))*.




Boosting—coordinate descent—uwith other Iossﬂs

Consider the minimization of

J(F) =Eng(YF(X)) = Eng(Y (Fi—1(X) + o fe (X))
Fix F;_1 and consider gradient descent: choose a directiarR™ to
minimizev!' V,J(F;_1(27) + v). We have

0
(9’01‘

sov should minimize

J(Fi—1(2}) +v) = %Qb/(yiFt—l(%))yi,

n

Z vy @ (YiFe—1(x;)) = .

1=1




Boosting—coordinate descent—with other Iossﬂs

If v;,y; € {£1}, this is equivalent to minimizing

Z Dy (i) 1[v; # yi),

whereDy (i) is —¢'(y; Fy—1(x;)), appropriately normalized. More
generally (for instance, if th¢ € G are real-valued)y should be chosen
to maximize the inner product

Z Dt(i)viyz’-
i=1




Boosting—coordinate descent—with other Iossﬂs

Choosef; € G to minimize

ZDt(@)yzft(%)

Choosen; € R to minimize
En (Y (e fi(X) + Fr1 (X))

Fy=F_1+4+af:.

Dyy1(i) = —¢/(in€t(:€z‘))_

end for




‘Dual problem: maximum entropy/l-projection I

Consider the following minimization problem:

KL Minimization:

min DKL<p7 ’U,)
p

st. Y pwif(z)=0 forfeg.
1=1

p=>0

pll1=1,

wherew is the uniform distributiony; = 1/n, andDg, is the
KL-divergence,Dg . (p,u) = > . pi In(p;/u;).




‘Dual problem: maximum entropy/l-projection I

Ignoring the positivity constraint (we’ll see we get it foee), the
Lagrangian is

L= szlnnpz +) oy (szyz a;> B (pT1—1).

feg 1=1
oL

op: In(np;) + 1+ Z ayryi f(z:) + B.

J€g

pi=exp(—(Inn+1+p)) exp( Zozfyz $z>.

J€g

J€g

exp( Zafyz mz). (InZ =Inn+1+4.)




‘Dual problem: maximum entropy/l-projection I

If we set) = . pq;g—;i = L+ pl'1 + B, we see that
L=—(+1)=Inn—InZ, so the dual problem is

Exponential Minimization:

min  nexp(—g(@) = Z =Y exp <y > ahh<xi>> .

heg

And this is the criterion that AdaBoost minimizes.




Iterative projection algorithm I

Some notation: foif € G, define the constraint

C(f) = {p e A" : Zpiyz‘f(wi) — 0} :

1=1

Recall the definition of the KL-projection,
Is(p;) := arg miny,e s D (p, pt).




Iterative projection algorithm I

P1 = u.
fort=1,2,....,Tdo
Choosef; € G to maximize

Dir (Ter) (pe), i) -

Setpi1 = ey, (pr)-
end for

At each step, projecis; onto a constrain€'( f; ).




AdaBoost Is iterative projection algorithm I

Theorem: At iterationt, this iterative projection algorithm choosgés
So that it andy; minimize

Ly = Zpt,z' exp (—yiou fr(z:)),
i=1

and the algorithm sets

Dt
Pt+1,6 = —Zt €Xp (—&tyift(ﬂfz‘))-
t

l.e., it iIs AdaBoost.




AdaBoost is iterative projection algorithm: proof I

For a fixedf;, the Lagrangian of the KL-projection on & f;) is

p,Oé :u sz Il— +&szyzft xz —|_,u (sz T 1)

and setting L /0p; = 0 gives

Pt+1,5 = DPt,i €XP (—ay; fi(x;)) exp(—1 — p)

— pZt—t exp (—ay; ft(z:)) -

Substituting intal, shows that the dual problem is maximization of
g(a, ) = —In Z;. And so the dual variable; is chosen to minimize;.




AdaBoost Is iterative projection algorithm: proof I

Also,

P 7
Dgr(pit1,pt) = § Piy11n ;H -
- £

= peari (—owyife(x;) — In Zy)

— —lIth.

So f; Is also chosen to minimiz&,.




Iterative projection does not converge if weakly Iearnabli

Theorem: If G = —¢, the feasible seft) ., C(f) is empty iff there ig
a weak learner, that is, for some> 0, for all distributionsp, there is an
f € G such that

sz'l[yi # f(zi)] < 5 =

And notice that, if there is a-weak learner, thex; < /1 — 4~2, so

1 1

D =—InZ; > =1
KL(Pt+1,Dt) 1 t =5 H1_4727

so the iterative projection algorithm does not converge.




Iterative projection with unnormalized KL divergence I

We can avoid this difficulty if we replacB x, with D, k1.

Unnormalized KL Minimization:

min DuKL(pal)
p

st. Y piwif(z)=0 forfegq,
1=1

p =0,

wherel is the all 1s vector, an®d,, « ; Is the unnormalized
KL-divergence,

Dyrr(p,q) =




lterative projection with unnormalized KL divergence I

Again we can ignore the positivity constraint, and comphbee t
Lagrangian:

L = Z pzlnpz +1_pz +Z&f (szyz xz)-

feg =1

oL

op In(p;) + Y azyif(xs).

feg

pi = exp (yz > Oéf?Jz‘f(%)) -

feg




Iterative projection with unnormalized KL divergence I

We see that the dual problem is:

Exponential Minimization:

moin n—g(a) = ZGXP —Yi Z ay f(x;)
i=1

feg

Again, this is the criterion that AdaBoost minimizes.




Unnormalized iterative projection algorithm I

P1 = 1.
fort=1,2,...,Tdo
Choosef; € G to maximize

Durr (Hegs) (pe),pe) -

Setpti1 = ey, (pt)-
end for

At each step, projecis onto a constraint'( f;).
The projectionlc 4, (p:) iSWrt Dy 1.




AdaBoost is unnormalized iterative projection aIgorithmI

Theorem: At iteration ¢, the unnormalized iterative projection alg
rithm chooseg; so that it andy; minimize

S _ iy prioxp (—yian ()
t — n y

and the algorithm sets

Pt+1,i — Pt,i €XP (—Oétyz'ft(l‘z')) :

l.e., itis (unnormalized) AdaBoost.




‘AdaBoost IS Iterative projection: Proof'

Note thatp = 0 shows that this problem is always feasible.

The proof of the theorem is similar to the normalized caser aRoxed f;,
the Lagrangian of the unnormalized KL-projection or(t0f;) is

Di
L(p,a) = Z (pz' In — +pt —Pz') + Oézpiyz'ft<5’3i)-

Pt.i

Settingd L /0p(i) = 0 gives

Pt+1,i = Pt,i €XP <—Oéyz‘ft($z‘)) :




‘AdaBoost IS Iterative projection: Proof'

Substituting intal, shows that the dual problem is maximization of

n

9(04) — Z (pt,z' _pz') = (1 — Z) Zpt,z'a

1=1

where, as in the AdaBoost notation,

2?:1 Pt,i €XP (—Oéyift(%))

Z:llzl pt,’l, |

Once again, the dual variabde is chosen to minimizeZ;.

/ =




‘AdaBoost IS Iterative projection: Proof'

And since

mn mn
Dyurr(Pis1,pt) = —ou Zptﬂ,z'yz'ft(%') + Z (Pt,i — Pe+1.i)
i=1 i=1

maximizing this quantity ovey; is equivalent to minimizingZ;.




Convergence of AdaBooﬂ

To understand the convergenceppfconsider the two sets:

P=()cH=) {peR”:Zpiyif(%) —0}7

J€g J€g i=1

Q= {pER” . i = exp (yZZ)\(f)f(xz)> : )\ERQ}

J€g

If the data isy-weakly learnable, then the only feasible poinpis- 0.
And in that case, we've seen that thheconverge tad), but the direction of
thep, does not converge. What about other cases?




