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Kernel methods for regressiod

Consider a regression problem:
Probability distributionP on X x R,
Observe X1, Y1),...,(X,,Y,) ~ P,
Choosef,, : X — R to minimizeE/(Y, f(X)) for (X,Y) ~ P.
Examples:
1 Ly, 9) = (y —9)*

2. Uy, y) = |y — 1.

3. Uy, 9) = (ly — 9l —e).
(e-insensitive loss: gives a similar QP to the SVM)




‘ Kernel ridge regression'

For quadratic los9(y, §) = (y — 9)?, we have

min  AIfI D (v — f(2))?
1=1

feH

Choosing the slack variabg and introducing an equality constraint, we
have

AOIP+ ) &
=1

&=y — 0" x;.




‘ Kernel ridge regression'

Forming the Lagrangian (for an equality, we do not need a coistraint
on the dual variable) and eliminating the primal variab¥es,obtain:

1
0 = ﬁZaixi,
_

gi_ 27

1 1
Tao— —ad'Ka— ~ala.

4\ 4
The solution to the dual problem is

gla) =y

a = 2A(K + M)ty




‘ Kernel ridge regression'

This has a natural interpretation as a Bayesian method. fdukghon

rule f,,(z) is the mean of the posterior distribution ffx) when
f : X — R has a Gaussian process prior Witli(z;) = 0,

Var(f(z1), f(z2)) = k(z1,22), andy = f(z) + N (0, A).




Convex loss for cIassificatio:.

We have seen various examples of convex loss functions osed f
classification. While we might aim to choose a decision fule¥ — R
to minimize

R(f) = Pr(Y # sign(f(X))) = E1[Y f(X) < 0],

we often work withf chosen to minimize a (regularized version of a)
sample average of a convex loss function like:

gbsvm(yf(x)) — (1 o yf(w))+ )
¢ AdaBoost(Yf(x)) = exp(—yf(x)),
gblogistic(yf(x)) — log(l T eXp<_yf< )))

This allows the use of efficient convex optimization alguomts. What is
the cost of this computational convenience?




Convex loss for cIassificatio:.

We will ignore the issue o (Y f(X)) versusE¢(Y f(X)): suppose
that we choos¢ : X — R to minimizeE¢(Y f(X)). When does this
lead to a good classifier (that is, with small risk)?

Define

First, we can observe thaty f(x)) > ¢(y, f(z)) implies that

R(f) < Ry(f). SoasmallR,(f) gives smallR(f). But this is a rather
weak assurance if, for examplef s R,(f) > 0. When does minimizing
R, lead to minimalR?




Convex loss for cIassificatio:.

Consider dixedxz € X.

Definen(z) = Pr(Y = 1|X = x).
ThenRy (f) = E6(Y f(X))
— EE [¢(v f(X))|X].

Elp(Yf(X))X = 2] =Pr(Y =1[X = z)o(f(z))
+Pr(Y = —1[X = z)o(— f(2))
= n(@)o(f(z)) + (1 = n(z))o(—f(z)).

Define the optimizer of this conditional expectation:

inf (ng(a) + (1 —n)o(—a))

aceR




‘Exanuﬂes'

Forg(a) = (1 —a)4,

H(n) = 2min(n,1 —n),

1+971—9):9'
2 2




‘ Examples'




Classification caIibrationI

The predictiony with minimal conditional risk isign(2n(x) — 1). If the
optimal conditional expectatioB|[¢(Y f(X))|X = z] can be achieved
with a value ofa: with the wrong sign, then minimizing is not useful
for classification. So define

H™(n) :=inf {né(a) + (1 = n)é(—a) : a(2n — 1) < 0}.

Definition: We say that is classification-calibratedif, for all n = 1/2,
H™(n) > H(n).

Classification-calibration is clearly necessary for miization of 24 to
lead to minimization ofR. We shall see that it is also sufficient.




‘ Classification calibration for convex¢ I

Theorem: For ¢ convex,¢ is classification-calibrated iff

1. ¢ is differentiable ab,
2. ¢'(0) < 0.

Proof: If is straightforward to check.

Only if: suppose thap is not differentiable ab. Then convexity implies
that it lies above several tangent lines. But then for vabfesnear1 /2,
ne(a) + (1 — n)eo(—a) is minimized bya = 0, so¢ is not
classification-calibrated.

Also, ¢'(0) > 0 leads tasign(a*(n)) # sign(n — 1/2).




‘ Excess risk versus excessrisk I

Theorem: For any nonnegativeé, measurablg : X — R and probat
bility distribution P on X’ x {+£1},

W(R(f) — R7) < Ry(f) — Ry,

whereR := infy Ry(f), R* := infy R(f), and, if¢ is convex,

e ()03

Furthermore¢ is classification calibrated iff

And if ¢ is classification calibrated and convexXf) = ¢(0)—H (




‘ Excess risk versus excessrisk I

If ¢ is not convex, the theorem holds with= +**, the Legendre
biconjugate of

oo (50 (52)

(The biconjugate™* of ¢ is the largest convex lower bound @ndefined
by epi g** = coepi g. So the definitions are equivalentgifis convex.)




Excess risk versus excessrisk: Proof I

First, some observations abatdtand):

1. Hn)=H(1 —n);H (n)=H (1 —n).

2. H Is concavey is convex.

3. 4(0) = 0.
4. EH(n(X)) = R},




Excess risk versus excessrisk: Proof I

In Lecture 2, we saw that

R(f) - R* =E (1 [sign<f<x>> £ sign (n<X>
Sincey Is convex, Jensen’s inequality implies

¥ (R(f) - RY) <Ep (1]---][20(X) — 1]
— L[] (20(X) = 1)) (sinced(0) = 0)

=E1[--](H (X)) — H(n(X)))  (defof))

(
(

)
)




Excess risk versus excessrisk: Proof I

Now, H~ (n(X)) is the minimizer ofE[¢(Y «)| X ] when
sign(a) # sign (n(X) — 1/2), so in particular, when
sign( f(X)) # sign (n(X) — 1/2), we have

H™(n(X)) < E[p(Y f(X))|X].

Also whether the sign condition is satisfied or not,

Elo(Y f(X)[X] = H(n(X)).

Thus, considering either value of the indicator shows that

Y (R(f) = R") <E[p(Y f(X)) — H(n(X))]
= Ry(f) — Ry,




‘ Classification calibration for convex¢ I

Extensions:

Every classification-calibrateglis an upper bound on loss: there is &
c such that¢(a) > 1ja < 0].

Flatter¢ (smaller Bregman divergence@tgives a tighter bound on
R(f) — R*interms of Ry (f) — Rj.

Under a low noise condition (that ig( X ) is unlikely to be near
1/2), the bound on excess risk in terms of excégssk is improved.




