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Overview

• Kernel regression.

− Kernel ridge regression.

• Convex losses for classification.

− Classification calibration.

− Excess risk versus excessφ-risk.
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Kernel methods for regression

Consider a regression problem:

• Probability distributionP onX × R,

• Observe(X1, Y1), . . . , (Xn, Yn) ∼ P ,

• Choosefn : X → R to minimizeEℓ(Y, f(X)) for (X, Y ) ∼ P .

Examples:

1. ℓ(y, ŷ) = (y − ŷ)2.

2. ℓ(y, ŷ) = |y − ŷ|.

3. ℓ(y, ŷ) = (|y − ŷ| − ǫ)
+

.

(ǫ-insensitive loss: gives a similar QP to the SVM)
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Kernel ridge regression

For quadratic loss,ℓ(y, ŷ) = (y − ŷ)2, we have

min
f∈H

λ‖f‖2H +
n
∑

i=1

(yi − f(xi))
2 .

Choosing the slack variableξi and introducing an equality constraint, we

have

min
θ,ξ

λ‖θ‖2 +
n
∑

i=1

ξ2i

s.t. ξi = yi − θTxi.
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Kernel ridge regression

Forming the Lagrangian (for an equality, we do not need a signconstraint

on the dual variable) and eliminating the primal variables,we obtain:

θ =
1

2λ

∑

αixi,

ξi =
αi

2
,

g(α) = yTα−
1

4λ
α′Kα−

1

4
αTα.

The solution to the dual problem is

α = 2λ(K + λI)−1y.
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Kernel ridge regression

This has a natural interpretation as a Bayesian method. The prediction

rulefn(x) is the mean of the posterior distribution off(x) when

f : X → R has a Gaussian process prior withEf(xi) = 0,

Var(f(x1), f(x2)) = k(x1, x2), andy = f(x) +N (0, λ).
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Convex loss for classification

We have seen various examples of convex loss functions used for

classification. While we might aim to choose a decision rulef : X → R

to minimize

R(f) = Pr(Y 6= sign(f(X))) = E1[Y f(X) ≤ 0],

we often work withf chosen to minimize a (regularized version of a)

sample average of a convex loss function like:

φsvm(yf(x)) = (1− yf(x))
+
,

φAdaBoost(yf(x)) = exp(−yf(x)),

φlogistic(yf(x)) = log(1 + exp(−yf(x))).

This allows the use of efficient convex optimization algorithms. What is

the cost of this computational convenience?
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Convex loss for classification

We will ignore the issue ofEφ(Y f(X)) versusÊφ(Y f(X)): suppose
that we choosef : X → R to minimizeEφ(Y f(X)). When does this
lead to a good classifier (that is, with small risk)?

Define

ℓ(y, f(x)) = 1[yf(x) ≤ 0],

R(f) = Eℓ(Y, f(X)),

Rφ(f) = Eφ(Y f(X)).

e.g.,φ(yf(x)) = (1− yf(x))+.

First, we can observe thatφ(yf(x)) ≥ ℓ(y, f(x)) implies that
R(f) ≤ Rφ(f). So a smallRφ(f) gives smallR(f). But this is a rather
weak assurance if, for example,inff Rφ(f) > 0. When does minimizing
Rφ lead to minimalR?
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Convex loss for classification

Consider afixedx ∈ X .

Defineη(x) = Pr(Y = 1|X = x).

ThenRφ(f) = Eφ(Y f(X))

= EE [φ(Y f(X))|X ] ,

E [φ(Y f(X))|X = x] = Pr(Y = 1|X = x)φ(f(x))

+ Pr(Y = −1|X = x)φ(−f(x))

= η(x)φ(f(x)) + (1− η(x))φ(−f(x)).

Define the optimizer of this conditional expectation:

H(η) := inf
α∈R

(ηφ(α) + (1− η)φ(−α))
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Examples

Forφ(α) = (1− α)+,

H(η) = 2min(η, 1− η),

H−(η) = φ(0) = 1,

ψ(θ) = 1− 2min

(

1 + θ

2
,
1− θ

2

)

= θ.
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Examples

Forφ(α) = exp(−α),

H(η) = 2
√

η(1− η),

H−(η) = φ(0) = 1,

ψ(θ) = 1−
√

1− θ2.
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Classification calibration

The prediction̂y with minimal conditional risk issign(2η(x)− 1). If the

optimal conditional expectationE[φ(Y f(X))|X = x] can be achieved

with a value ofα with the wrong sign, then minimizingRφ is not useful

for classification. So define

H−(η) := inf {ηφ(α) + (1− η)φ(−α) : α(2η − 1) ≤ 0} .

Definition: We say thatφ is classification-calibratedif, for all η 6= 1/2,

H−(η) > H(η).

Classification-calibration is clearly necessary for minimization ofRφ to

lead to minimization ofR. We shall see that it is also sufficient.
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Classification calibration for convexφ

Theorem: Forφ convex,φ is classification-calibrated iff

1. φ is differentiable at0,

2. φ′(0) < 0.

Proof: If is straightforward to check.

Only if: suppose thatφ is not differentiable at0. Then convexity implies

that it lies above several tangent lines. But then for valuesof η near1/2,

ηφ(α) + (1− η)φ(−α) is minimized byα = 0, soφ is not

classification-calibrated.

Also,φ′(0) ≥ 0 leads tosign(α∗(η)) 6= sign(η − 1/2).
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Excess risk versus excessφ-risk

Theorem: For any nonnegativeφ, measurablef : X → R and proba-

bility distributionP onX × {±1},

ψ(R(f)− R∗) ≤ Rφ(f)−R∗
φ,

whereR∗
φ := inff Rφ(f),R∗ := inff R(f), and, ifφ is convex,

ψ(θ) := H−

(

1 + θ

2

)

−H

(

1 + θ

2

)

Furthermore,φ is classification calibrated iff

ψ(θi) → 0 iff θi → 0.

And if φ is classification calibrated and convex,ψ(θ) = φ(0)−H
(

1+θ
2

)

.
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Excess risk versus excessφ-risk

If φ is not convex, the theorem holds withψ = ψ̃∗∗, the Legendre

biconjugate of

ψ̃(θ) := H−

(

1 + θ

2

)

−H

(

1 + θ

2

)

.

(The biconjugateg∗∗ of g is the largest convex lower bound oñψ, defined

by epi g∗∗ = co epi g. So the definitions are equivalent ifφ is convex.)
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Excess risk versus excessφ-risk: Proof

First, some observations aboutH andψ:

1. H(η) = H(1− η); H−(η) = H−(1− η).

2. H is concave,ψ is convex.

3. ψ(0) = 0.

4. EH(η(X)) = R∗
φ.
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Excess risk versus excessφ-risk: Proof

In Lecture 2, we saw that

R(f)−R∗ = E

(

1

[

sign(f(X)) 6= sign

(

η(X)−
1

2

)]

|2η(X)− 1|

)

.

Sinceψ is convex, Jensen’s inequality implies

ψ (R(f)−R∗) ≤ Eψ (1 [· · · ] |2η(X)− 1|)

= E1 [· · · ]ψ (|2η(X)− 1|) (sinceψ(0) = 0)

= E1 [· · · ]
(

H−(η(X))−H(η(X))
)

(def ofψ)
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Excess risk versus excessφ-risk: Proof

Now,H−(η(X)) is the minimizer ofE[φ(Y α)|X ] when

sign(α) 6= sign (η(X)− 1/2), so in particular, when

sign(f(X)) 6= sign (η(X)− 1/2), we have

H−(η(X)) ≤ E[φ(Y f(X))|X ].

Also whether the sign condition is satisfied or not,

E [φ(Y f(X))|X ] ≥ H(η(X)).

Thus, considering either value of the indicator shows that

ψ (R(f)− R∗) ≤ E [φ(Y f(X))−H(η(X))]

= Rφ(f)−R∗
φ.
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Classification calibration for convexφ

Extensions:

• Every classification-calibratedφ is an upper bound on loss: there is a

c such thatcφ(α) ≥ 1[α ≤ 0].

• Flatterφ (smaller Bregman divergence at0) gives a tighter bound on

R(f)−R∗ in terms ofRφ(f)−R∗
φ.

• Under a low noise condition (that is,η(X) is unlikely to be near

1/2), the bound on excess risk in terms of excessφ-risk is improved.
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