
CS281B/Stat241B. Statistical Learning Theory. Lecture
23.

Peter Bartlett

1



Overview

• Risk bounds for SVMs.

− Rademacher averages.

• Gradient descent for SVMs.

− Regret bounds.

− “Pegasos”
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Risk bounds for SVMs

Consider an SVM-like criterion:

min
f∈H

1

2
‖f‖2H +

C

n

n
∑

i=1

ℓ (f(xi), yi) .

Instead of this regularized empirical risk minimization, we consider a

constrained version:

min
f∈H

1

n

n
∑

i=1

ℓ (f(xi), yi)

s.t. ‖f‖2H ≤ B2.

In fact, this is always equivalent, for a suitable choice of the constantB.
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Risk bounds for SVMs

Also, notice that choosingf = 0 shows that

min
f∈H

1

2
‖f‖2H +

C

n

n
∑

i=1

ℓ (f(xi), yi) ≤
C

n

n
∑

i=1

ℓ (0, yi) .

Hence, the solutionf∗ of the regularized problem satisfies

1

2
‖f‖2H ≤ C

n

n
∑

i=1

ℓ (0, yi) .

For instance, for hinge loss, the right hand side isC. Thus, we are always

restricted to a ball in a RKHS.
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Risk bounds for SVMs

We have seen that minimizing the sample average of the loss leads to near

minimal expected loss, provided the Rademacher averages ofthe loss

class are small. And ifℓ is 1-Lipschitz in the predictionsf(xi), then for

F = {f ∈ H : ‖f‖H ≤ B} ,
ℓ(F ) = {(x, y) 7→ ℓ(f(x), y) : f ∈ F} ,

we haveE‖Rn‖ℓ(F ) ≤ 2E‖Rn‖F + c/
√
n. (Here,c depends on a bound

on ℓ(0, y).)
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Risk bounds for SVMs

Theorem: For an RKHSH with reproducing kernelk, defineF =

{f ∈ H : ‖f‖H ≤ B}. For a sampleX1, . . . , Xn,

E [‖Rn‖F |X1, . . . , Xn] ≤
B√
n

√

tr(K)

n
,

whereKij = k(Xi, Xj).

Recall that the trace of a matrix istr(K) =
∑

iKii =
∑

i k(xi, xi).
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Risk bounds for SVMs

Theorem: If H is a RKHS of functions on compactX that has a con-

tinuous kernelk, P is a probability distribution onX , andλj are the

eigenvalues of the integral operator

Tkf(·) =
∫

X

k(·, x)f(x) dP (x),

andF = {f ∈ H : ‖f‖H ≤ B}, then

E‖Rn‖F ≤ B

√

Ek(X,X)

n
= B

√

∑∞
j=1 λj

n
.
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Risk bounds for SVMs: Proof

Sincek is the reproducing kernel,

‖Rn‖F = sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫif(Xi)

∣

∣

∣

∣

∣

= sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi 〈k(Xi, ·), f〉
∣

∣

∣

∣

∣

= sup
f∈H:‖f‖H≤B

∣

∣

∣

∣

∣

〈

1

n

n
∑

i=1

ǫik(Xi, ·), f
〉
∣

∣

∣

∣

∣

= B

∥

∥

1
n

∑n

i=1 ǫik(Xi, ·)
∥

∥

2

∥

∥

1
n

∑n

i=1 ǫik(Xi, ·)
∥

∥

= B

√

1

n2

∑

i,j

ǫiǫjk(Xi, Xj).
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Risk bounds for SVMs: Proof

Applying Jensen’s inequality,

E [‖Rn‖F |X1, . . . , Xn] ≤ B

√

√

√

√

√E





1

n2

∑

i,j

ǫiǫjk(Xi, Xj)

∣

∣

∣

∣

∣

∣

X1, . . . , Xn





= B

√

1

n2

∑

i

k(Xi, Xi)

=
B√
n

√

tr(K)

n
.

9



Risk bounds for SVMs: Proof

Applying Jensen’s inequality again, we have

E‖Rn‖F ≤ B√
n

√

Ek(X,X).

Using the decompositionk(x, y) =
∑∞

j=1 λjψj(u)ψj(v), we have

E‖Rn‖F ≤ B√
n

√

Ek(X,X)

=
B√
n

√

∑

j

λjEψj(X)2

=
B√
n

√

∑

j

λj ,

because theψj are orthonormal inL2(P ), soEψj(X)ψi(X) = 1[i = j].
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Regret bounds for hinge loss

Consider the online convex optimization problem with hingeloss and a

Euclidean norm constraint on the parameter vectorθ:

ℓt(θ) =
(

1− ytθ
Txt
)

+
,

‖xt‖ ≤ R,

yt ∈ {−1, 1},
θ ∈ Θ,

Θ = {θ : ‖θ‖ ≤ B}.
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Regret bounds for hinge loss

We have seen (see Lecture 15) that projected gradient descent gives
√
n

regret

Theorem: ForG = maxt ‖∇ℓt(θt)‖ andD = diam(Θ), the gradient

strategy:

θt := ΠΘ(θt − η∇ℓt(θt)),
with η = D/(G

√
n) has regret satisfying

L̂n − L∗
n ≤ GD

√
n.

Thus,

1

n

n
∑

t=1

(

1− ytθ
T
t xt
)

+
−min

θ∈Θ

1

n

n
∑

t=1

(

1− ytθ
Txt
)

+
≤ GD√

n
=

2RB√
n
.
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Regret bounds for SVMs

Suppose we augment the loss function with a regularization term:

ℓt(θ) =
λ

2
‖θ‖2 +

(

1− ytθ
Txt
)

+
,

‖xt‖ ≤ R,

yt ∈ {−1, 1},
θ ∈ R

d.
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Regret bounds for SVMs

Sinceℓt is λ-strongly convex wrt squared Euclidean distance, we can use

gradient descent (mirror descent with squared Euclidean regularizer) with

ηt = 2/(tλ) to show that

1

n

n
∑

t=1

ℓt(θt) ≤ min
θ

1

n

n
∑

t=1

ℓt(θ) +O

(

G2 logn

λn

)

.

That is,

1

n

n
∑

t=1

(

1− ytθ
T
t xt
)

+
+

λ

2n

n
∑

t=1

‖θt‖2

≤min
θ

(

1

n

n
∑

t=1

(

1− ytθ
Txt
)

+
+
λ

2
‖θ‖2

)

+O

(

G2 logn

λn

)

.
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PEGASOS

(PEGASOS=Primal Estimated sub-GrAdient SOlver for SVM)

We can use an online convex optimization method like online gradient

descent to design a fast approximate solver for the SVM QP:

The regret bound holds for any sequence of(xt, yt) pairs. (Given a fixed

sample, we can, for example, choose a sequence uniformly at random

from the sample.) Since theℓt are convex, we can take

θ =
1

n

n
∑

t=1

θt

and we have a good approximate solution to the SVM QP:
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PEGASOS

1

n

n
∑

t=1

(

1− ytθ
T
xt

)

+
+
λ

2
‖θ‖2

≤min
θ

(

1

n

n
∑

t=1

(

1− ytθ
Txt
)

+
+
λ

2
‖θ‖2

)

+O

(

G2 logn

λn

)

.

(And it’s possible to use concentration to show that a uniform random

choice gives a similar—only a constant factor worse—bound on the

solution to the original QP over the full sample.)
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Kernel version of PEGASOS

The representer theorem tells us that, for data(x1, y1), . . . , (xn, yn), we

can write the SVM QP as

min
θ

1

n

n
∑

t=1

(1− yt(Kα)t)+ +
λ

2
αTKα,

whereKij = k(xi, xj). And we can use a similar stochastic gradient

approach: choose an(xt, yt) pair uniformly, compute the gradient of the

corresponding lossℓt, and use it to update theα vector.
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