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\Overview'

Risk bounds for SVMs.

Rademacher averages.

Gradient descent for SVMSs.

Regret bounds.

“Pegasos”




Risk boundsfor SVl\/lSI

Consider an SVM-like criterion:

| 1, O
min 5Hf|la+g;€(f(wz),yz)-

Instead of this regularized empirical risk minimizatiore wsonsider a
constrained version:

%Zg(f(mi)vyi)

st |IfI3 < B

feH

In fact, this is always equivalent, for a suitable choicehef tonstanB.




Risk boundsfor SVl\/lSI

Also, notice that choosingi = 0 shows that

n

C — C
min  CFIR S O < S 00.m).
1=1

s i=1

Hence, the solutiort* of the regularized problem satisfies

1 C <
Il < — > £(0.3).
1=1

For instance, for hinge loss, the right hand sid€'isThus, we are always
restricted to a ball in a RKHS.




Risk boundsfor SVI\/lSI

We have seen that minimizing the sample average of the lads ® near
minimal expected loss, provided the Rademacher averaghs tiss
class are small. And ¥ is 1-Lipschitz in the predictiong(z; ), then for

F={fe#H:|fln=<Bj,
UF) ={(z,y) = L(f(x),y): f € F},

we haveE| R, || o7y < 2E|| R, ||F + ¢/+/n. (Here,c depends on a bound
on/(0,y).)




Risk boundsfor SVI\/lSI

Theorem: For an RKHSH with reproducing kernek, define FF =
{feH:|fllx <B}. ForasampleXy,..., X,

B [tr(K)

E[|R,|r| X1,..., X, < ,
(I Ralle| X, X < 5/ 7

WhereKz'j = k(X’m XJ)

Recall that the trace of a matrixis(K) = > . K;; = > . k(x;, x;).




Risk boundsfor SVI\/lSI

Theorem: If H is a RKHS of functions on compaédt that has a con
tinuous kernek, P is a probability distribution on¥’, and ), are the
eigenvalues of the integral operator

Tof() = /X k(- 2) f(x) dP(2),

andF'={f eH:|fllx < B}, then

Ek(X, X PV
n n




\Risk boundsfor SVMs: Proof.

Sincek is the reproducing kernel,

|Rn||F = sup
feFr |

= sup
fer

feHr:||flln<B

= sup Zezk(Xz,),f>|

1=1

2
pllz Xz (X, )|

Hl z_l E%k(XM)H

Z €€k XZ,X .




\Risk boundsfor SVMs: Proof'

Applying Jensen’s inequality,

E[|R.|F| X1,...,X,] <B —Zezej (X4, X;)

\ L

1
=B, | Zk(Xi,Xz-)

B Jtr(K)
=7 ,




\Risk boundsfor SVMs: Proof.

Applying Jensen’s inequality again, we have

B
E|R,|r < —Ek(X, X).
IIRIIF_\/E\/ (X, X)

Using the decompositioh(x, y) = Z;?il A (u)y;(v), we have

because the,; are orthonormal il (P), SOEY; (X )y (X) = 1[¢

Jl.




‘ Regret bounds for hingeloss'

Consider the online convex optimization problem with hihggs and a
Euclidean norm constraint on the parameter vegtor

ft(H) = (1 — ytHTmt)+ ,

@] < R,
Yt S {_171}7
00,
©={0:]0] < B}




‘ Regret bounds for hingeloss'

We have seen (see Lecture 15) that projected gradient degees/n
regret

Theorem: ForG = max, ||V (0;)|| and D = diam(©), the gradien
strategy:
075 = H@(Qt — nVEt(Ht)),

with n = D/(G+/n) has regret satisfying

L, — L <GDn.




‘ Regret bounds for SVI\/ISI

Suppose we augment the loss function with a regularizagion:t

A
Et(9> = —H@HQ + (1 — thT:Ut)

2 +7

@] < R,
Y € {_17 1}7
0 € RY.




‘ Regret bounds for SVI\/ISI

Since/; is A-strongly convex wrt squared Euclidean distance, we can uge
gradient descent (mirror descent with squared Euclideguiaazer) with
n: = 2/(t\) to show that

1 — 1 — G?logn
— < min — 0. (6 .
n;€t<9t) _memn; 2 >+O< AN )

That is,

n

1 A <
w2 (L= wdfed 403 0

& A
Z (1 — yt9T$t>_|_ + 292> + O (

t=1




PEGASOS

(PEGASOS=Primal Estimated sub-GrAdient SOlver for SVM)

We can use an online convex optimization method like onlnzelignt
descent to design a fast approximate solver for the SVM QP:
The regret bound holds for any sequencéanf y;) pairs. (Given a fixed

sample, we can, for example, choose a sequence uniformaydbm
from the sample.) Since the are convex, we can take

1 &
9:520,5

and we have a good approximate solution to the SVM QP:




n

Ll (R B

1 « - Ao G?logn
EZ(l—yte a;t)++§9>+0< e E

t=1

(And it's possible to use concentration to show that a umfoandom
choice gives a similar—only a constant factor worse—boumthe
solution to the original QP over the full sample.)




\ Kernel version of PEGASOS'

The representer theorem tells us that, for datay, ), . . ., (zn, y,), We
can write the SVM QP as

n

1

A
min —Z(l—yt(Koz)t)++§aTKoz,

0 n
t=1

whereK;; = k(z;, ;). And we can use a similar stochastic gradient
approach: choose dn;, y;) pair uniformly, compute the gradient of the
corresponding losg, and use it to update thevector.




