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Overview

• Soft margin support vector machines

− Quadratic program

− Dual

− ν-SVM
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Recall: Hard Margin Support Vector Machine

min
θ

1

2
‖θ‖2

s.t. yiθ
Txi ≥ 1, i = 1, 2, . . . , n.

fn(x) = sign

(

n
∑

i=1

α∗
i yik(xi, x)

)

,

min
α

1

2
αT diag(y)K diag(y)α− αT 1

s.t. α ≥ 0.
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Support Vector Machine

For the feasible region to be non-empty, there must be aθ with

yiθ
Txi > 0, i.e., all points classified correctly.

What if there is no suchθ?

We could aim to minimize the proportion of constraints violated,

1

n

∣

∣

{

i : yiθ
Txi < 1

}∣

∣ ,

but this optimization problem is NP-hard.
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Soft Margin Support Vector Machine

Instead, we can minimize a convex function ofθ, such as

min
θ

1

2
‖θ‖2 +

C

n

n
∑

i=1

(1− yiθ
′xi)+

where(α)+ = max{α, 0}.
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Soft Margin Support Vector Machine

This is also a quadratic program:

min
θ,ξ

1

2
‖θ‖2 +

C

n

n
∑

i=1

ξi

s.t. ξi ≥ 0

yiθ
′xi ≥ 1− ξi.

Note: the optimal slack variablesξi satisfy

ξi =
(

1− yiθ
Txi

)

+
.
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Soft Margin Support Vector Machine

L(θ, ξ, α, λ) =
1

2
‖θ‖2 +

C

n

n
∑

i=1

ξi +
n
∑

i=1

αi(1− yiθ
Txi − ξi)−

n
∑

i=1

λiξi

Minimizing overθ, ξ gives

θ =
∑

i

αiyixi,

C

n
= αi + λi,

so

g(α, λ) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjx
T
i xj .
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Soft Margin Support Vector Machine

The dual problem is:

max
α,λ

∑

i

αi −
1

2

∑

i,j

αiαjyiyjx
T
i xj

s.t. αi ≥ 0

λi ≥ 0

αi + λi =
C

n
.

Eliminating theλi:

min
α

1

2
αT diag(y)K diag(y)α− αT 1

s.t. 0 ≤ αi ≤
C

n
.
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Support vectors

Note: the only change in going from the hard margin to the softmargin is

the addition of the upper bound on theαi.

Consider the consequences of complementary slackness:

α∗
i

(

1− yix
T
i θ

∗ − ξ∗i
)

= 0.

λ∗
i ξ

∗
i = 0.

1. α∗
i > 0 impliesyixT

i θ
∗ = 1− ξ∗i ≤ 1. That is, the ‘support vectors’

(yixi with αi > 0) are in the wrong halfspace{x : xT θ∗ ≤ 1}.

2. If yixT
i θ

∗ < 1, ξ∗i > 0, soλ∗
i = 0, andα∗

i = C/n. That is, the

support vectors in the open halfspace{x : xT θ∗ < 1} have

α∗
i = C/n.
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Role of C

• In the primal, increasingC penalizes errors more (and puts less

emphasis on minimizing‖θ‖, that is, maximizing the margin).

• In the dual, decreasingC forces theαis to be small. So the solution

is not strongly influenced by a single outlier.
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ν-SVM

An alternative parameterization:

min
θ,ρ

1

2
‖θ‖2 − νρ+

1

n

n
∑

i=1

(

ρ− yix
T
i θ
)

+

s.t. ρ ≥ 0.

that is,

min
θ,ρ,ξi

1

2
‖θ‖2 − νρ+

1

n

n
∑

i=1

ξi

s.t. ρ ≥ 0

ξi ≥ 0

yiθ
′xi ≥ ρ− ξi.
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ν-SVM

• C is replaced by parameterν.

• New variableρ: Points withξi = 0 are at distanceρ/‖θ‖ from the

decision boundary.

• We can calculate the Lagrangian (with Lagrange multipliersγ, βi,

andαi, respectively, for the three constraints), hence the dual,as

before. We get

θ∗ =
∑

αiyixi

ν =
∑

αi − γ

αi + βi =
1

n
.

So we can drop theγ andβi variables.
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ν-SVM

The dual problem is:

min
α

1

2

∑

i,j

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤
1

n
,

∑

αi ≥ ν.
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ν-SVM

Theorem: If the solution satisfiesρ > 0, then

∣

∣

{

i : yix
T
i θ < ρ

}∣

∣

(1)

≤

∣

∣

∣

∣

{

i : αi =
1

n

}∣

∣

∣

∣

(2)

≤ νn

(3)

≤ |{i : αi > 0}|

(4)

≤
∣

∣

{

i : yix
T
i θ ≤ ρ

}∣

∣ .
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ν-SVM

Proof:

1. Complementary slackness:yix
T
i θ < ρ impliesξi > 0 impliesβi = 0

impliesαi = 1/n.

2. Complementary slackness:ρ > 0 impliesγ = 0 implies
∑

αi = ν

implies
∑

i

1[αi = 1/n] =
∑

i

nαi1[αi = 1/n]

≤
∑

i

nαi

= νn.
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ν-SVM

3. Sinceαi ≤ 1/n, we have

ν ≤
∑

αi ≤
1

n

∑

1[αi > 0].

4. Complementary slackness:αi > 0 impliesyixT
i θ = ρ− ξi ≤ ρ.

Soν is a natural parameter. It is approximately the proportion of

mistakes. More precisely, it lies between the number of support vectors

that fall in the wrong open halfspace,{x : xT θ∗ < 1}, and the number of

support vectors.

But there is always a suitable choice ofC to give the same solution:

Theorem: If the ν-SVM has a solution withρ > 0, then the SVM with

C = 1/ρ gives the same decision function.
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Representer Theorem

We have seen that, for both the hard margin and soft margin SVM, the

optimalθ∗ has the form

θ∗ =
∑

i

βixi

for somexi. The representer theorem, which we are about to see, shows

that this is always true whenever we solve an optimization problem like

min
θ

1

2
‖θ‖2 + L(θTx1, . . . , θ

Txn),

for someL (which corresponds to a surrogate risk).
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Representer Theorem

Theorem: Fix a kernelk with corresponding RKHSH. For any (loss)

functionL : Rn → R and any non-decreasingΩ : R → R, if

min
f∈H

J(f) := min
f∈H

(

L(f(x1), . . . , f(xn)) + Ω(‖f‖2H)
)

= J∗,

then for someα1, . . . , αn ∈ R,

f(·) =
∑

αik(xi, ·)

satisfiesJ(f) = J∗. Furthermore, ifΩ is increasing, then each mini-

mizer ofJ(f) can be expressed in this form.

18



Representer Theorem: Proof

Consider the projectionf‖ on to the subspace

span{k(xi, ·) : 1 ≤ i ≤ n}.

Write f = f‖ + f⊥. Then

f(xi) = 〈f, k(xi, ·)〉

= 〈f‖, k(xi, ·)〉

= f‖(xi).
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Representer Theorem: Proof

But

‖f‖2 = ‖f‖‖
2 + ‖f⊥‖

2 ≥ ‖f‖‖
2.

So

J(f) = L(f) + Ω(‖f‖2H)

= L(f‖) + Ω(‖f‖‖
2
H + f⊥‖

2
H)

≥ L(f‖) + Ω(‖f‖‖
2
H).
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Representer Theorem

That is, we can view an SVM (and any other M-estimator that includes an

RKHS norm regularization term in its criterion) as minimizing an

objective over all elements of the RKHS, but the solution only needs to be

a finite expansion. So we can write an optimization problem like this:

min
f∈H

1

2
‖f‖2H +

C

n

n
∑

i=1

ℓ (f(xi), yi) .

as:

min
β∈Rn

1

2
βTKβ +

C

n

n
∑

i=1

ℓ





∑

j

βjk(xj , xi), yi



 .
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