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‘Recall: Hard Margin Support Vector I\/Iachine'

1
in 6]

s.t.  yflx; >1, i=1,2,...,n.

fn<£U) — Sign <Z Oé;kyik<x27w>> y

1
min §aT diag(y) K diag(y)a — «

(67

1

S.t. a > 0.




Support Vector M achine'

For the feasible region to be non-empty, there must tHhavah
;01 x; > 0, i.e., all points classified correctly.

What if there is no such?

We could aim to minimize the proportion of constraints vieth

1
- Hz : yiHT:L’Z- < 1} :

but this optimization problem is NP-hard.




Soft Margin Support Vector Machi neI

Instead, we can minimize a convex functiondosuch as

C’I’L
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where(a), = max{«,0}.




Soft Margin Support Vector Machi ne'

This is also a quadratic program:

1 C —
s 2H I +n;§

st. & >0
y;0'x; >1—¢.

Note: the optimal slack variablgs satisfy

&= (1— ?JiQT%')JF :




Soft Margin Support Vector Machi neI
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Soft Margin Support Vector Machi neI

The dual problem is:
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‘ Support vectors'

Note: the only change in going from the hard margin to the wafigin is
the addition of the upper bound on thg

Consider the consequences of complementary slackness:

of (1 - yixi 0 — &) =0.

Xigr =0,

1. af > 0impliesy;z! 0* =1 — & < 1. That s, the ‘support vectors’
(y;x; with o; > 0) are in the wrong halfspader : z16* < 1}.

2. fyxl 0" < 1,6 > 0,50\ =0, anda; = C/n. Thatis, the
support vectors in the open halfspgdee: 1 0* < 1} have
af =C/n.




\Roleof(]'

In the primal, increasing’ penalizes errors more (and puts less

emphasis on minimizingd||, that is, maximizing the margin).

In the dual, decreasing forces thex;s to be small. So the solution
IS not strongly influenced by a single outlier.




‘ v-SVM I

An alternative parameterization:

, 1 1 &
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S.t. p > 0.

that is,
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‘ v-SVM I

e (C'isreplaced by parameter

e New variablep: Points with¢; = 0 are at distance/||0|| from the
decision boundary.

e We can calculate the Lagrangian (with Lagrange multiphers;,
andq;, respectively, for the three constraints), hence the dsal,
before. We get

0 :Zaiyﬂz‘
V:ZO&L'—’Y
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Oéz'+5i:5'

So we can drop the andj; variables.




‘ v-SVM I

The dual problem is:
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‘ v-SVM I

Theorem: If the solution satisfiep > 0, then
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‘ v-SVM I

Proof:

1. Complementary slacknesgz! 6 < p impliesé; > 0 implies3; = 0
impliesa; = 1/n.

2. Complementary slackness> 0 impliesy = 0 implies) " «; = v
Implies
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‘ v-SVM I

3. Sinceq; < 1/n, we have

<Y o< S 1o > 0]

4. Complementary slackness; > 0 impliesy;z! 0 = p — & < p.

Sov is a natural parameter. It is approximately the proportibn o
mistakes. More precisely, it lies between the number of sttpfectors
that fall in the wrong open halfspacgy : 1'0* < 1}, and the number of
support vectors.

But there is always a suitable choice@fto give the same solution:

Theorem: If the »-SVM has a solution witly > 0, then the SVM with
C' = 1/p gives the same decision function.




Representer Theorem I

We have seen that, for both the hard margin and soft margin Skid/
optimal6* has the form
0" = Z Bixi

for somex;. The representer theorem, which we are about to see, shows
that this is always true whenever we solve an optimizatiamiem like

1
min Ol + L0, 0 ),

for someL (which corresponds to a surrogate risk).
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Representer Theorem I

Theorem: Fix a kernelk with corresponding RKH3{. For any (Ioss}y
function L : R” — R and any non-decreasinfg): R — R, If

min J(f) := min (L(f(z1),..., f(zn)) + Q| f1I5))

JfeH feH
— J*7

then for someyq,...,a, € R,

FO) = aik(ws,)

satisfiesJ(f) = J*. Furthermore, if2 is increasing, then each mini
mizer of J(f) can be expressed in this form.




‘ Representer Theorem: Proof'

Consider the projectiorfi on to the subspace

span{k(z;, ) : 1 <i < n}.

Write f = f; + f.. Then

fxs) = (f, k(i)
= (f|, k(xs,-))
= fjj (@)




‘ Representer Theorem: Proof'

AP = A+ ™ > 1A

J(f) = L(f) +Qlfl5%)
(1) + QI fyll5 + fLllFo)
(1) + QA 117)-

L
L




Representer Theorem I

That is, we can view an SVM (and any other M-estimator thatighes an
RKHS norm regularization term in its criterion) as mininmgian
objective over all elements of the RKHS, but the solutioryordeds to be
a finite expansion. So we can write an optimization probldw this:

| 1, O
min 5\\f||a+g;€<f<xz),yz)-




