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Hard margin

Detour into optimization
(Lagrangian, duality, saddle point, KKT conditions)

Dual form of SVM: support vectors
Kernels
SVM and the convex hull of the data.




Recall: Perceptron convergence theorem I

Givenlinearly separable data, that is,y;07 z; > 0, the perceptron
algorithm has risk (also, regret per round) no more than

wherey = min; 0% x;y; /||0]|. (PICTURE)




Support Vector M achine.

Thesupport vector machine optimizes this bound, by maximizing the
margin:
50 !
9T .
S.L i 33227 1=1,2,...,n.
191
Since we only care about the sign for classification, we aannstance,
fix ||0]] = 1/~ to simplify the problem slightly:

min 10|
0

S.t. yiHTiEZ' > 1




A brief detour into optimization I

For theprimal convex optimization problem

p” = min fo(z)

Stfz(l')éo, i:1,2,...,m.

Introduce Lagrange multipliers (dual variables) ..., \,, > 0, and
define the Lagrangiah : R» ™™ — R as




Dual problem I

e The primal problem is the value of the min-max game:

p" =infsup L(x, \).
L A>0

(Because for an infeasible L(x, \) can be made infinite, and for a
feasiblex, the \; f; () terms will become zero.)

e Define thedual problem as

d* = sup g(\) :=supinf L(x, \).
A>0 A>0

e Inazero sum game, it’s always better to choose second:

p" =infsup L(x, \) > supinf L(z, \) = d*.
T A>0 A>0 T

This is calledweak duality.




‘Strong duality'

If there is asaddle point (z*, A*), so that for allke and\ > 0,
L(z*, \) < L(z*, \*) < Lz, \"),
then we havetrong duality:

p* =infsup L(x, \) = supinf L(z, \) = d”.
T A>0 A>0 @

This I1s because:

inf sup L(z, \) < sup L(z™, \)
T A>0 A>0

= L(z™,\")
= inf L(x, \*)

< supinf L(x, \).
A>Q ©




‘Strong duality'

There are other sufficient conditions for strong dualitg(efy, f;
convex, and Slater’s condition: somas strictly feasible, that is, satisfies
the constraints with strict inequalities).




‘ Complementary slacknessl

Suppose* = d*. Then for primal solutiorx*, dual solution\*, we have

fo(z™) = g(\") = ifxlf (fo(w) + Zﬁfi(@)

< (fo(l‘*) + Zﬁfi(f)) -
1=1
That is,
D Aifilzt) = 0.
1=1
But \¥ > 0 andf;(«*) <0, so every term in the sum must be zero:

N fi(a®) =0




‘ Complementary slacknessl

This is known agzomplementary slackness:

if f;(z*) < 0then)\; =0.
if \; > 0thenf;(z*) = 0.




‘ Karush-Kuhn-Tucker optimality conditions'

If fo, f; are convex and differentiable, then\ are optimal and the
duality gap is zero iff

1. Primal feasibility:f;(z) < 0.
2. Dual feasibility:\; > 0.

3. Complementary slackness;f;(x) = 0.

4. Stationarity:V fo(x) + > . iV fi(z) = 0.




‘ Support vector machines'

1
min —H9H2
0 2

s.t.  y0lz; > 1, i=1,2,...,n.
1 mn
(B, 0) = 01 + 3 (1 — itz

g(a) = i%f L0, a)

setting 6" =) a;yxi,
1=1

n
1
g(Oé) = ZO&@ — 5 ZO&iOéjyiijU;Q?j.
1=1

©,J




‘ Support vector machines'

If there is a primal feasible point, we can find a strictly fb&spoint, so
we have strong duality.

Notice that we can express the optimialin terms of the dual solution,
a*, 1o




‘ Support vector machines'

Complementary slackness tells us about the role ofithe

a; > 0impliesy;0*' z; = 1,

y;0'x; > 1 impliesa; = 0.

That is, only the points for which the constraints are tigetipport
vectors”) appear in the sum defining. (PICTURE)




‘ Support vector machines'

As with the perceptron algorithm, we can express the salutiderms of
an arbitrary kernek:

Jn(x) = sign ({6, 2(x)))

= sign (Z Q;Y; <<I)($v;)a (I)(l’»)

— Sign (Z O‘zyzk(wu iU)) ’
1=1

where«a solves the dual problem

1
min §ozT diag(y) K diag(y)a — «

T

o

S.t. a > 0.




‘Another Inter pretation I

We can write the SVM as an equivalent optimization problend, e
dual leads to an alternative interpretation:

max Y
0,y

st yblz; >, i=1,2,...,n.
6]1* < 1.

L(O,7, A\ B) = =7+ Y _ Xy —wif'z;) + B(|16]]> — 1)

1=1




‘Another Inter pretation I

g\ B) = inf L(0.7. X, B)

n

. 1 <
setting 0% = % Z )\zyzﬂﬁz and Z A =1
1=1

1=1
. 1
gives g()\, 5) = —@ zz AiAjyiyjiszCCj — B
2

1
ie., ' — AilYi T
S Y: Z A

st > A=LXA>0,3>0.




‘Another interpretation'

We can find the optimab and simplify this to

And we have that the solution is

1> Ny ||

which is the vector in the direction of the smallest elemédnt o

CO{yiiEz'Ii:L...,’n}.

(PICTURE)




