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\ Recall: Inner Products'

For the perceptron algorithm and its analysis, all we ne&deslan inner
product onsome vector space:

= sign | Y- a,(@(x)). () |

b X — V.

We don’t need to explicitly evaluat®e(x), as long as we can evaluate the
Inner products (which might be much cheaper).




‘ Kernels and inner product spacei

Definition: % : X% — R is positive semidefiniteif, for all
nand allzy,...,z, € X, theGram matrix K € R"*"—
defined byK;; = k(z;, x;)—Iis positive semidefinite.

Definition: & : X2 — Ris akernel if it is
1. Symmetrick(u,v) = k(v,u), and

2. Positive semidefinite: every Gram matfk; = k(x;, x;)
IS positive semidefinite.




‘ Kernels and inner product spacei

Theorem: If k£ is a kernel, then there is an inner product spacand
feature mapb such that(u,v) = (®(u), P(v)).

Consider: ®(x) := k(- x),
F :=span{P(z) : x € X'},

<Z a; P (u;), Z qu’(vj)> = Z i Bk (ui, vj).




‘ Kernels and inner product spacei

We can augment this inner product space a little, by inclyidihthe
limit points, i.e., making icomplete (wrt the metric

If =gl =V {f—9.f—9)):

Definition: A metric spaceF is complete if every Cauchy

feF.
A Hilbert space Is an inner product space that is a comp

metric space wrt the norm induced by the inner product.

sequence (ie: elements approach each other) converges to an

ete




‘ Kernels and reproducing kernel Hilbert spaceﬂ

Definition: A reproducing kernel Hilbert space is a Hilbert

spaceH of functionsf : X — R, with areproducing kernel
k: X% — R, that is, the span ofk(-,z) : x € X} is dense
iIn H, andk(x,-) € H is the point evaluation function fok:

— <]€<£E, ')7 f>




‘ Kernels and reproducing kernel Hilbert spaceﬂ

For our construction of a Hilbert spagééfrom a kernelk, it's easy to
check that is the reproducing kernel of the Hilbert space, and that

H Is unique.
There are alternative (equivalent) ways of define an RKHS.

Not all Hilbert spaces have a reproducing kernel.




Mercer’s Theorem.

Fix a symmetric functiork : X? — R on a compact set¥ C R<, and
consider the integral operat®y, : Lo(X) — Lo(X) defined as

ka():/)(k(,m)f(x)dx

We sayT}, is positive semidefinite if, for alf € Lo (X)),
(f; Trf)r,xy = 0, that s,

/X2 k(u,v)f(u)f(v)dudv > 0.




Mercer’s Theorem'

Theorem: If kis continuous and}, is positive semidefinite, then, has
eigenfunctions); € Lo(X) (say||v;||, = 1) with eigenvalues\; > 0,
and for allu, v € X', we can write

k(u,v) = Z Aihi(u) i (v).

Furthermore, this series converges uniformly.




‘ Mercer's Theorem: finite-dimensional analog'

Consider the finite-dimensional analog: Wrkg ; = k(z;, x;); identify
f € R* with avectorf = (fi,..., fn) € R™ Then

ka Zk y L fza

so forall f € R",
fTKf>0.




‘ Mercer’s Theorem: finite-dimensional analog'

That is, K is positive semidefinite, so we can write it as

K = ZAiviU?,
1=1
with \; > 0. Then we have
k(ﬂ?i, $j) = Kz
= (VAV')

]

mn
— E )\tvtz”Utj
t=1

— Z At (23) )y (xj>v

wherey, : X — R is given by, (x;) = vy ;.




Mercer’s Theorem'

Mercer’s theorem gives another representatioh a$ an inner product,
this time with feature map

(%(w)\

U(x) =

\m.(x) ) |

Notice thatl}, is positive semidefinite iff for alk, ..., z, € X the Gram
matrix K is positive semidefinite. So we have another characteoizati




\ Kernels'

Theorem: For X c RY compact and: : X2 — R continuous and
symmetric, the following are equivalent:

1. Every Gram matrix is positive semidefinite.
2. The integral operatdfy, is positive semidefinite.

3. We can express as

k(u,v) = Z Aii(u) i (v)

for fixed \; > 0 andvy,; : X — R.
4. k is the reproducing kernel of an RKHS an




Mercer’s Theorem'

Notes:

o We have seen two representation%:(f, v) as an inner product
k(u,v) = (®(u), ®(v)):

(I)l(u) — k(vu) <k('7u)7 k(-,’U)> — k(u,v)

(\/A_ﬂﬁl(u)\
VAo (u) [ (@g(u), Ba(v)) = Z A (u)i; (v).

\ )

So they are not unique.

e Computing a kernet is equivalent to computing inner products, in
what might be an infinite-dimensional space.




Mercer’s Theorem.

An infinite-dimensional RKHS is approximated by a
finite-dimensional subspace, since we have uniform abesolut

convergence.

lim sup




Constructing Kernels'

If k1 andk, are kernels o, then the following are also kernels:

1. k(u,v) = arki(u,v) + asks(u,v) (for ay,as > 0).

2. k(u,v) = ki(u,v)ka(u,v)
3. k(u,v) = k1(f(u), f(v)), wheref : V — X.




Constructing Kernels'

. k(u,v) = g(u)g(v), whereg : X — R.

. k(u,v) = p(k1(u,v)), wherep is a polynomial with positive
coefficients.

. k(u,v) = exp(k1(u,v)).

. k(u,v) = exp (—||u —v||?/2).




\Translation-invariant kernels '

The gaussian kernel is an example of a translation-invekexmel:
k(u,v) = f(u —v), wheref : [—m, 7] — R is a continuous, even
function. Then we can write

f(x) = Z ay, cos(ne) (@, >0)

k(u,v) Z ay, (sin(nu) sin(nv) 4 cos(nu) cos(nv))

n=0

S Anthn ()i (1),

= {1, sin(u), cos(u), sin(2u), cos(2u), . ..}




‘ Marginalized kernels'

Given a probability distributior? on X x H, and a kernek defined on
(x, h) pairs, we can define

kv (x,2') = Zk((:v, h), (z',h"))P(h|z)P(h'|x").

h,h/

For example, ifr is a graph, and is a random walk on the graph, ahd
reflects the similarity of the nodes on the two random walkis, gives a
useful (and efficiently computable) approach to computimghaer
product between two graphs.




