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Optimal Regret'

We have:
a set of actions,
a set of loss functions.

At time ¢,
Player chooses an actiap from A.
Adversary choose§ : A — R from L.
Player incurs losg; (a;).

Regretis the value of the game:

Vi(A, L) = infsup - - -inf sup (Z 0i(ay) — i

b R




\ Recall: Dual Game'

Theorem: If A is compact and all; are convex, continuous functior
then

n

Vn<./4, L) — SU.pE (Z inf E [ft(at)wl, c. 7€t—1] — 1
P

atEA
t=1

where the supremum is over joint distributiod$ over seguence
..., 0, In LM




‘ Recall: Sequential Rademacher Averagi

Theorem:

Vi (Av E) <2 Sup Ee1 ©r - Sup Een Sup Z etgt (a)a
£y ln a€A

whereeq, . . ., ¢, are independent Rademacher (unifatiirvalued) ran:
dom variables.

e Rademacher averages in probabilistic setting:

. 1 <
excess risk< cEsup |— Y e (Y3, f(Xt))| .
fer |

e Sequential Rademacher averages in adversarial setting:

Vi <~’47 £) < csup E, ---sup E sup Z Etgt(a)'
51 En CLEA t=1




Sequential Rademacher Averages: Examplr

Consider step functions di:

fo:x— 1z > a
ley(a) = 1]fa(z) # Y]
L={a—1[fa(z) #y]:z €R, y{0,1}}.

Fix a distribution orR x {4+1}, and consider the Rademacher averageq

ESUpZGtEXt Yt( )

aER




‘ Rademacher Averages: Examplj

For step functions o, Rademacher averages are:

ESUpZEtEXt yt< )

aER

= Esupz erlx, 1(

aERt 1

< supEsupZet ry < aj
Tt CLERt 1

)

— E max €4
0<:<n+1

= O0(Vn).




Sequential Rademacher Averages: Examplr

Consider the sequential Rademacher averages:

n
sup E¢, ---sup E._sup Z erli(a)
41 12 a

t=1

--sup E, supZetl[azt < al.

e a t—1

If ¢, = 1, we'd like to choose: such thatr; < a.

If ¢, = —1, we'd like to choose such thatc; > a.




Sequential Rademacher Averages: Examplr

We can choose; = 0 and, fort =1,...,n,

t—1
1=1

Then if we setw = x,, + 27 "¢,,, We have

1 ifEtzl,

exllry < al = _
0 otherwise,

which is maximal.




Sequential Rademacher Averages: Examplr

So the sequential Rademacher averages are

n

a

n
---sup E.sup etli(a) =
B (o

t=1

Compare with the Rademacher averages:

Esup Y elq(V:, X;) = O(v/n).

aCR 11




‘ Optimal Regret: Lower Bounds'

For the case of prediction with absolute loss:

lias) = |y — ag(ze)],
there are (almost) corresponding lower bounds:

C1 Rn <A)

log?’/2 n

<V, < C2Rn(-/4)7

mn
---sup E. sup Z era(xy).
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Recall: Perceptron aIgorithmI

Input: <X1, Yl), Cee (Xn, Yn) e R? x {:‘:1}
0p =0 € Rd, t=20
while some(z;, y;) is misclassified, i.ey; # sign(0] x;)

pick some misclassifiet;, ;)
Or41 = 01 + yix;
t:=1t+1

Returnd,.




Recall: Perceptron aIgorithmI

Perceptron convergence theorem:Givenlinearly separable data
(y;01z; > 0), the perceptron algorithm makes no more tlfén
updates & =radius,y =margin).

Regret/mistake bound: For

A= {z — sign(6'z) : € R},

L= {aw— 1a(xy) # i) : {(xs,ys) toey radiusR, marginy},

the perceptron algorithm has regret no more tRap=.

Risk bound: If 8’z y/||0] > ~, then risk< R?/(n~?).
(And this is optimal.)




\ Kernel methods'

The perceptron algorithm (and its convergence proof) worlesmore
generalnner product space

We can writed; in terms of the data:
975 = Zz ;X5 with ||04H1 = Zz |Oéz‘ = .

We can replace the inner produat, #) = x'0 with an arbitrary
Inner product:

predict: ¢; = sign (Zj a;(x;, xi>),

update: if g; # y;, seta!"™) ==l + ;.




‘ Inner products: definition I

An inner product on a vector space is:

Symmetric (u,v) = (v, u).

Linear (u+ v, w) = (u,w) + (v, w),

(au, v) = alu,v).

Positive definite (u,u) > 0,
(u,u) =0=u=0.




Inner products: examples.

. Dot product oriR?: (u,v) = u'v.

. Arbitrary inner product ofiR?: (u, v) = u’ Av for symmetric positive
definite A.

(The eigendecomposition of shows that this is the regular dot
product of a scaled—id orthogonal directions—version of the v.)

. Random variables X, Y) = E(XY).

. Continuous functions ofa, b], (f, g) = f; f(x)g(x)dzx.

. Symmetric matrices, A, B) = tr(AB).

. Square summable sequendesp) = > .° , u;v;, where||ul]* < oco.




\ Kernels'

In these examples, we define the inner product on a particatdor
space. But for the perceptron algorithm and analysis, alheeded was
that there is an inner product @omevector space:

We don’t need to explicitly evaluat®e(x), as long as we can evaluate the
Inner products.




‘ Example: Polynomial kernels.

Here,®, : R? — R3.




‘ Example: Polynomial kernels'

e The function clas§z — 6'®5(z) : € R?} gives all homogeneous
degree 2 polynomials. Decision boundaries are solutianfeet
polynomial equations.

Similarly, we can writék,,, (u, v) = (u’v)™, with a feature map
®,, : R — R, and the function clasgx — 6'®,,,(z) : § € R}
gives all homogeneous degree m polynomials.

o The feature ma@,, : R? — R? hasD = (“*7"~1) features, which
grows exponentially witm. But for the perceptron algorithm, we
only need to evaluate quantities involvikQu, v) = ®,,(u)' ®,, (v),
and we never need to explicitly compute the (huge) featung ma




What £ correspond to inner product spaces;'

Suppose we have a functiégn X2 — R. Does it correspond to an inner
product insomevector space?

l.e.. What properties shoufdhave to ensure that there is some underlyi
iInner product spacger, (-, -)) and feature magp : X — F such that

k(u,v) = (®(u), ®(v))?




What £ correspond to inner product spaces;'

Necessary conditions:
1. Because an inner product is symmetric, we must Bgmametry:
k(u,v) = k(v,u).
2. Because an inner product is positive definite, we must have

k(u,u) > 0.
(But we might not haveé:(u,u) =0 = u = 0.)

3. Cauchy-Schwarz impligs(u, v)? < k(u, u)k(v,v).




What £ correspond to inner product spaces;l

In fact, 2 and 3 follow fromk being positive semidefinite:

Definition: % : X% — R is positive semidefiniteif, for all
nand allzy,...,z, € X, the Gram matrix K € R"*"—
defined byK;; = k(z;, x,;)—Is positive semidefinite.

Notice thatk(u,v) = (®(u), P(v)) is positive semidefinite:

vV Kv = Zvi’l}jk(l’z‘,%) = Zvi’l}j@)(l’z’)a (I)(xj»

i,7 ,J

= <Z ’UZ'(I)<£EZ'),Z’U]'(I)<ZEJ')> Z 0.

g J

Also, n = 1 showsk(u,u) > 0
k(u,u)k(v,v).

And n = 2 showsk(u, v)?

>
<




What £ correspond to inner product spaces;l

These conditions are necessand sufficient

Definition: k: X? — Ris akernel ifitis
1. Symmetrick(u,v) = k(v,u), and

2. Positive semidefinite: every Gram matfk; = k(z;, z;)
IS positive semidefinite.

feature mapb such that(u,v) = (®(u), ®(v)).

Theorem: If k£ is a kernel, then there is an inner product spacand a‘




‘ Kernels and inner product spacej

Consider: O(x) = k(-,x),
F =span{®(x):x € X},

<Z ;P (u;), Z 5.7‘1’(’03')> = Z i Bk (ui, vj).

Then it's easy to checkF is a linear space of functions, -) is
symmetric, linear, positive definite.




