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Recall: Online Prediction'

Repeated game:

Decision method plays; € A
World reveald; € L

Minimax regret is the value of the game:

min max--- min max (Ln — L;';) .
a1€EAlEL an€ALl,eL



Online Convex Optimization'

. Problem formulation
. Empirical minimization fails.
. Gradient algorithm.

. Regularized minimization
Bregman divergence

Regularized minimizatiors minimizing latest loss and
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization
Mirror descent

5. Regret bounds




‘ Recall: A Regularization Viewpoint'

Suppos#; is linear:¢;(a) = ¢; - a, and A = R?.

Then we can view the gradient step

Atr1 — At — NV (at)

as minimizing the regularized criterion

Ap1 = argmm (nZE ||a2> :




‘ Recall: Regularization'

Regularized minimization

Consider the family of strategies of the form:

t
Q41 = arg zrgé‘l (nszlfs(a) + R(a)) .

The regularize? : R? — R is strictly convex and differentiable.
e R keeps the sequence @fs stable: it diminisheg;’s influence.

o We can view the choice af; ; as trading off two competing forces:
making/;(a;. 1) small, and keeping;. ; close toa;.




‘ Recall: Regularization'

In the unconstrained casd (= R?), regularized minimization is
equivalent to minimizing the latest loss and the distandbeqrevious
decision. The appropriate notion of distance isBnegman divergence

Dg, .:
Define
dy = R,
Py = Oy 1 + nly,

SO that

ac A

a;11 = arg min <77 Zﬁs(a) + R(a))

= in ®.(a).
arggrélﬂ t(a)




Recall: Bregman Divergencs

Definition 1. For a strictly convex, differentiablé : RY — R, the
Bregman divergence wit is defined, fow, b € R?, as

Dg(a,b) = ®(a) — (P(b) + VO(b) - (a —D)).

Ds(a,b) is the difference betweeh(a) and the value at of the linear
approximation ofd aboutb. (PICTURE)

Example:

®(a) = 3llal*: De(a,b) = 3lla —b]*.




Bregman Divergencﬂ

Example: Fora € [0, c0)?, the unnormalized negative entro@a) =
2?21 a; (Ina; — 1), has

Dg(a,b) = (a;(Ina; — 1) = bi(Inb; — 1) — Inb;(a; — b;))

:Z(ailn%—l—bi—ai),

the unnormalized KL divergence.
Thus, fora € A%, ®(a) = 3, a;Ina; has




Bregman Divergencﬂ

When the domain ob is A ¢ R¢, in addition to differentiability and
strict convexity, we make two more assumptions:

The interior of A is convex,

For a sequence approaching the boundatd ofVe(a,,)|| — oo.

We say that such @ is alL.egendre function




‘ Bregman Divergence Propertiej

. Dy >0, Dg(a,a) = 0.
. Darp =D+ Dg.
. Forllinear,Dg.¢y = Dg.

. Bregman projectionl1? (b) = arg minge 4 D (a, b) is uniquely
defined for closed, conveA.

. Generalized Pythagorugor closed, convex, a* = I1%(b), a € A,
Dg(a,b) > Dg(a,a*) + Dg(a*,b).

6. VoDg(a,b) = V®(a) — VO(b).
. For®* the Legendre dual cb,
Vo = (Vo) ',
Dg(a,b) = Dg«(VP®(b), VO(a)).




Legendre DualI

Here, for a Legendre functiob : A — R, we define the Legendre dual ag

O*(u) = 51613 (u-v—®(v)).

4
same slope m
s I
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sup achieved here
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=f(m) /

(http://maze5.net/)




Legendre Dual'

Properties:
®* is Legendre.
dom(®*) = V& (int dom ).
Vo = (Vo) .
Dg(a,b) = Dg«(V®(b), VP(a)).
O** = P,




Properties of Regularization I\/Iethodil

In the unconstrained casd (= RY), regularized minimization is
equivalent to minimizing the latest loss and the distancedBian
divergence) to the previous decision.

Theorem: Definea; viaVR(ay) = 0, and set

Qr+1 = arg min (1fy(a) + Da,_, (a,a1)) .

t
Gt+1 = arg min (n;&(a) + R(Cl)) -




Properties of Regularization MethodEI

Proof. By the definition of®,,
nti(a) + De,_,(a,a:) = Pi(a) — Pe-1(a) + Do, _, (a, ).
The derivative wrt is

V&,(a) — VPi_1(a) + VDo, . (a,as)
— V(Dt(a) — VCIDt_l(a) -+ V([)t_l(a) — V(I)t_l(&t)

Setting to zero shows that

vq)t(&ﬁ—l) — V(I)t—l(&t) - = VCI)O(&l) — VR(&l) =0,

Soa; 1 minimizes®;,.




Properties of Regularization I\/Iethodil

Constrained minimization is equivalent to unconstrainegimmzation,
followed by Bregman projection:

Theorem: For

— in ®
At+1 arggrélﬂ t(a),

Qi1 = arg HEI%R% P4 (a),
a

we have

Cl,t_|_1 = Hi)lt (CNLH_l ) .




Properties of Regularization Methodil

Proof. Leta; denotell’y (a;+1). First, by definition ofa; 1,

®4(arr1) < Pilag q)-

Conversely,

Do, (ay11,Gt+1) < Do, (ars1, @rr1).

But V(I)t(CNLH_l) =0, so
Do, (a,at1) = Pi(a) — Pr(ar+1).

ThUS,(I)t(GJ:H_l) S (I)t(at_|_1).




Properties of Regularization I\/Iethodil

Example: Forlinear/,;, regularized minimization is equivalent to mi
Imizing the last loss plus the Bregman divergemst R to the previous

decision:

arg min (77 > l(a) + R(Cl))

= I (arg min (nl;(a) + Dg(a, &t))) ,

acRd

because adding a linear functiond®odoes not chang®.




Properties of Regularization Methods: Linear Losi.I

We can replacé; by V/;(a;), and this leads to an upper bound on regref.

Theorem: Any strategy for online linear optimization, with regret-sa
Isfying

n n
D g —min} g-a<Cu(gr,... )
t=1 t=1

can be used to construct a strategy for online convex ofitmoiz, with
regret

Z@t(at) — zr&ré\lz&(a) < Cn(Vli(ar),...,Vi,(an)).

Proof. COnveXity Implles& <CLt) — gt <CL) < Vﬁt <CLt) . <CLt — CL).




Properties of Regularization Methods: Linear Losi.I

Key Point:

We can replacé; by V/;(a;), and this leads to an upper bound on regre.

Thus, we can work witlhinear/,.




‘ Regularization Methods: Mirror Descent'

Regularized minimization for linear losses can be vieweghggor
descent-taking a gradient step in a dual space:

Theorem: The decisions

t
Gert = 8T8 T (77 D 9s-a+t R(a))
s=1

can be written

ar11 = (VR) ™ (VR(ar) — ng:) -

This corresponds to first mapping fraipthroughV R, then taking a step
in the direction—g,, then mapping back througiVR)~! = VR* to

iyt




‘ Regularization Methods: Mirror Descent'

Proof. For the unconstrained minimization, we have

soVR(a;11) = VR(a;) — ng:, which can be written

ar41 = VR (VR(a:) —nge) -




